4,143 research outputs found
Recommended from our members
Nonreciprocal Wavefront Engineering with Time-Modulated Gradient Metasurfaces
We propose a paradigm to realize nonreciprocal wavefront engineering using time-modulated gradient metasurfaces. The essential building block of these surfaces is a subwavelength unit cell whose reflection coefficient oscillates at low frequency. We demonstrate theoretically and experimentally that such modulation permits tailoring the phase and amplitude of any desired nonlinear harmonic and determines the behavior of all other emerging fields. By appropriately adjusting the phase delay applied to the modulation of each unit cell, we realize time-modulated gradient metasurfaces that provide efficient conversion between two desired frequencies and enable nonreciprocity by (i) imposing drastically different phase gradients during the up/down conversion processes and (ii) exploiting the interplay between the generation of certain nonlinear surface and propagative waves. To demonstrate the performance and broad reach of the proposed platform, we design and analyze metasurfaces able to implement various functionalities, including beam steering and focusing, while exhibiting strong and angle-insensitive nonreciprocal responses. Our findings open an alternative direction in the field of gradient metasurfaces, in which wavefront control and magnetic-free nonreciprocity are locally merged to manipulate the scattered fields
Hypernetwork functional image representation
Motivated by the human way of memorizing images we introduce their functional
representation, where an image is represented by a neural network. For this
purpose, we construct a hypernetwork which takes an image and returns weights
to the target network, which maps point from the plane (representing positions
of the pixel) into its corresponding color in the image. Since the obtained
representation is continuous, one can easily inspect the image at various
resolutions and perform on it arbitrary continuous operations. Moreover, by
inspecting interpolations we show that such representation has some properties
characteristic to generative models. To evaluate the proposed mechanism
experimentally, we apply it to image super-resolution problem. Despite using a
single model for various scaling factors, we obtained results comparable to
existing super-resolution methods
Do differences in profiling criteria bias performance measurements? Economic profiling of medical clinics under the Korea National Health Insurance program: An observational study using claims data
<p>Abstract</p> <p>Background</p> <p>With a greater emphasis on cost containment in many health care systems, it has become common to evaluate each physician's relative resource use. This study explored the major factors that influence the economic performance rankings of medical clinics in the Korea National Health Insurance (NHI) program by assessing the consistency between cost-efficiency indices constructed using different profiling criteria.</p> <p>Methods</p> <p>Data on medical care benefit costs for outpatient care at medical clinics nationwide were collected from the NHI claims database. We calculated eight types of cost-efficiency index with different profiling criteria for each medical clinic and investigated the agreement between the decile rankings of each index pair using the weighted kappa statistic.</p> <p>Results</p> <p>The exclusion of pharmacy cost lowered agreement between rankings to the lowest level, and differences in case-mix classification also lowered agreement considerably.</p> <p>Conclusions</p> <p>A medical clinic may be identified as either cost-efficient or cost-inefficient, even when using the same index, depending on the profiling criteria applied. Whether a country has a single insurance or a multiple-insurer system, it is very important to have standardized profiling criteria for the consolidated management of health care costs.</p
Transition Metal Migration Can Facilitate Ionic Diffusion in Defect Garnet-Based Intercalation Electrodes
The importance of metal migration during multielectron redox activity has been characterized, revealing a competing demand to satisfy bonding requirements and local strains in structures upon alkali intercalation. The local structural evolution required to accommodate intercalation in Y2(MoO4)3 and Al2(MoO4)3 has been contrasted by operando characterization methods, including X-ray absorption spectroscopy and diffraction, along with nuclear magnetic resonance measurements. Computational modeling further rationalized behavioral differences. The local structure of Y2(MoO4)3 was maintained upon lithiation, while the structure of Al2(MoO4)3 underwent substantial local atomic rearrangements as the more ionic character of the bonds in Al2(MoO4)3 allowed Al to mix off its starting octahedral position to accommodate strain during cycling. However, this mixing was prevented in the more covalent Y2(MoO4)3, which accommodated strain through rotational motion of polyhedral subunits. Knowing that an increased ionic character can facilitate the diffusion of redox-inactive metals when cycling multielectron electrodes offers a powerful design principle when identifying next-generation intercalation hosts
Recommended from our members
The influence of the atmospheric boundary layer on nocturnal layers of noctuids and other moths migrating over southern Britain
Insects migrating at high altitude over southern Britain have been continuously monitored by automatically-operating, vertical-looking radars over a period of several years. During some occasions in the summer months, the migrants were observed to form well-defined layer concentrations, typically at heights of 200-400 m, in the stable night-time atmosphere. Under these conditions, insects are likely to have control over their vertical movements and are selecting flight heights which are favourable for long-range migration. We therefore investigated the factors influencing the formation of these insect layers by comparing radar measurements of the vertical distribution of insect density with meteorological profiles generated by the UK Met. Office’s Unified Model (UM). Radar-derived measurements of mass and displacement speed, along with data from Rothamsted Insect Survey light traps provided information on the identity of the migrants. We present here three case studies where noctuid and pyralid moths contributed substantially to the observed layers. The major meteorological factors influencing the layer concentrations appeared to be: (a) the altitude of the warmest air, (b) heights corresponding to temperature preferences or thresholds for sustained migration and (c), on nights when air temperatures are relatively high, wind-speed maxima associated with the nocturnal jet. Back-trajectories indicated that layer duration may have been determined by the distance to the coast. Overall, the unique combination of meteorological data from the UM and insect data from entomological radar described here show considerable promise for systematic studies of high-altitude insect layering
Evolution of Cooperation and Coordination in a Dynamically Networked Society
Situations of conflict giving rise to social dilemmas are widespread in
society and game theory is one major way in which they can be investigated.
Starting from the observation that individuals in society interact through
networks of acquaintances, we model the co-evolution of the agents' strategies
and of the social network itself using two prototypical games, the Prisoner's
Dilemma and the Stag Hunt. Allowing agents to dismiss ties and establish new
ones, we find that cooperation and coordination can be achieved through the
self-organization of the social network, a result that is non-trivial,
especially in the Prisoner's Dilemma case. The evolution and stability of
cooperation implies the condensation of agents exploiting particular game
strategies into strong and stable clusters which are more densely connected,
even in the more difficult case of the Prisoner's Dilemma.Comment: 18 pages, 14 figures. to appea
Evaluation of the effectiveness of a novel brain-computer interface neuromodulative intervention to relieve neuropathic pain following spinal cord injury: Protocol for a single-case experimental design with multiple baselines
Background: Neuropathic pain is a debilitating secondary condition for many individuals with spinal cord injury. Spinal cord injury neuropathic pain often is poorly responsive to existing pharmacological and nonpharmacological treatments. A growing body of evidence supports the potential for brain-computer interface systems to reduce spinal cord injury neuropathic pain via electroencephalographic neurofeedback. However, further studies are needed to provide more definitive evidence regarding the effectiveness of this intervention. Objective: The primary objective of this study is to evaluate the effectiveness of a multiday course of a brain-computer interface neuromodulative intervention in a gaming environment to provide pain relief for individuals with neuropathic pain following spinal cord injury. Methods: We have developed a novel brain-computer interface-based neuromodulative intervention for spinal cord injury neuropathic pain. Our brain-computer interface neuromodulative treatment includes an interactive gaming interface, and a neuromodulation protocol targeted to suppress theta (4-8 Hz) and high beta (20-30 Hz) frequency powers, and enhance alpha (9-12 Hz) power. We will use a single-case experimental design with multiple baselines to examine the effectiveness of our self-developed brain-computer interface neuromodulative intervention for the treatment of spinal cord injury neuropathic pain. We will recruit 3 participants with spinal cord injury neuropathic pain. Each participant will be randomly allocated to a different baseline phase (ie, 7, 10, or 14 days), which will then be followed by 20 sessions of a 30-minute brain-computer interface neuromodulative intervention over a 4-week period. The visual analog scale assessing average pain intensity will serve as the primary outcome measure. We will also assess pain interference as a secondary outcome domain. Generalization measures will assess quality of life, sleep quality, and anxiety and depressive symptoms, as well as resting-state electroencephalography and thalamic γ-aminobutyric acid concentration. Results: This study was approved by the Human Research Committees of the University of New South Wales in July 2019 and the University of Technology Sydney in January 2020. We plan to begin the trial in October 2020 and expect to publish the results by the end of 2021. Conclusions: This clinical trial using single-case experimental design methodology has been designed to evaluate the effectiveness of a novel brain-computer interface neuromodulative treatment for people with neuropathic pain after spinal cord injury. Single-case experimental designs are considered a viable alternative approach to randomized clinical trials to identify evidence-based practices in the field of technology-based health interventions when recruitment of large samples is not feasible
Fast, scalable, Bayesian spike identification for multi-electrode arrays
We present an algorithm to identify individual neural spikes observed on
high-density multi-electrode arrays (MEAs). Our method can distinguish large
numbers of distinct neural units, even when spikes overlap, and accounts for
intrinsic variability of spikes from each unit. As MEAs grow larger, it is
important to find spike-identification methods that are scalable, that is, the
computational cost of spike fitting should scale well with the number of units
observed. Our algorithm accomplishes this goal, and is fast, because it
exploits the spatial locality of each unit and the basic biophysics of
extracellular signal propagation. Human intervention is minimized and
streamlined via a graphical interface. We illustrate our method on data from a
mammalian retina preparation and document its performance on simulated data
consisting of spikes added to experimentally measured background noise. The
algorithm is highly accurate
- …