211 research outputs found
Decoding Unattended Fearful Faces with Whole-Brain Correlations: An Approach to Identify Condition-Dependent Large-Scale Functional Connectivity
Processing of unattended threat-related stimuli, such as fearful faces, has been previously examined using group functional magnetic resonance (fMRI) approaches. However, the identification of features of brain activity containing sufficient information to decode, or “brain-read”, unattended (implicit) fear perception remains an active research goal. Here we test the hypothesis that patterns of large-scale functional connectivity (FC) decode the emotional expression of implicitly perceived faces within single individuals using training data from separate subjects. fMRI and a blocked design were used to acquire BOLD signals during implicit (task-unrelated) presentation of fearful and neutral faces. A pattern classifier (linear kernel Support Vector Machine, or SVM) with linear filter feature selection used pair-wise FC as features to predict the emotional expression of implicitly presented faces. We plotted classification accuracy vs. number of top N selected features and observed that significantly higher than chance accuracies (between 90–100%) were achieved with 15–40 features. During fearful face presentation, the most informative and positively modulated FC was between angular gyrus and hippocampus, while the greatest overall contributing region was the thalamus, with positively modulated connections to bilateral middle temporal gyrus and insula. Other FCs that predicted fear included superior-occipital and parietal regions, cerebellum and prefrontal cortex. By comparison, patterns of spatial activity (as opposed to interactivity) were relatively uninformative in decoding implicit fear. These findings indicate that whole-brain patterns of interactivity are a sensitive and informative signature of unattended fearful emotion processing. At the same time, we demonstrate and propose a sensitive and exploratory approach for the identification of large-scale, condition-dependent FC. In contrast to model-based, group approaches, the current approach does not discount the multivariate, joint responses of multiple functional connections and is not hampered by signal loss and the need for multiple comparisons correction
Many LINE1 elements contribute to the transcriptome of human somatic cells
Over 600 LINE 1 elements are shown to be transcribed in humans; 400 of these are full-length elements in the reference genome
Molecular Evolution and Functional Divergence of the Cytochrome P450 3 (CYP3) Family in Actinopterygii (Ray-Finned Fish)
The cytochrome P450 (CYP) superfamily is a multifunctional hemethiolate enzyme that is widely distributed from Bacteria to Eukarya. The CYP3 family contains mainly the four subfamilies CYP3A, CYP3B, CYP3C and CYP3D in vertebrates; however, only the Actinopterygii (ray-finned fish) have all four subfamilies and detailed understanding of the evolutionary relationship of Actinopterygii CYP3 family members would be valuable.Phylogenetic relationships were constructed to trace the evolutionary history of the Actinopterygii CYP3 family genes. Selection analysis, relative rate tests and functional divergence analysis were combined to interpret the relationship of the site-specific evolution and functional divergence in the Actinopterygii CYP3 family. The results showed that the four CYP3 subfamilies in Actinopterygii might be formed by gene duplication. The first gene duplication event was responsible for divergence of the CYP3B/C clusters from ancient CYP3 before the origin of the Actinopterygii, which corresponded to the fish-specific whole genome duplication (WGD). Tandem repeat duplication in each of the homologue clusters produced stable CYP3B, CYP3C, CYP3A and CYP3D subfamilies. Acceleration of asymmetric evolutionary rates and purifying selection together were the main force for the production of new subfamilies and functional divergence in the new subset after gene duplication, whereas positive selection was detected only in the retained CYP3A subfamily. Furthermore, nearly half of the functional divergence sites appear to be related to substrate recognition, which suggests that site-specific evolution is closely related with functional divergence in the Actinopterygii CYP3 family.The split of fish-specific CYP3 subfamilies was related to the fish-specific WGD, and site-specific acceleration of asymmetric evolutionary rates and purifying selection was the main force for the origin of the new subfamilies and functional divergence in the new subset after gene duplication. Site-specific evolution in substrate recognition was related to functional divergence in the Actinopterygii CYP3 family
A Pilot Study of Lay Health Worker Outreach and Colorectal Cancer Screening Among Chinese Americans
The research team recruited eight Chinese American (seven females, one male) lay health workers (LHWs). They received 12 h of training about colorectal cancer (CRC), its screening, and basic health education techniques. Each LHW were asked to recruit ten participants and conduct two educational sessions. Of the 81 participants recruited, 73 had not received colorectal cancer screening. Their mean age was 63.0 years, and 72.6% were women. Knowledge of colorectal cancer, its causes, and its screening increased significantly. Receipt of first colorectal cancer screening test increased from 0.0% at baseline to 55.7% for fecal occult blood tests, 7.1% for sigmoidoscopy, and 7.1% for colonoscopy. LHW outreach is feasible and may be effective in promoting CRC screening among Chinese Americans
Palaeomagnetic determination of emplacement temperature of Vesuvius AD 79 pyroclastic deposits
The city of Herculaneum was buried under 20 m of pyroclastic deposits during the AD 79 eruption of Vesuvius, whose crater is only 7 km to the east. These deposits have been interpreted as the deposits of mudflows or hot pyroclastic flows. Maury's studies of incinerated wood in Herculaneum demonstrate heating to at least 400° C. We have studied the variation of remanent magnetism with temperature for specimens taken from the deposits, including specimens of the matrix material and of embedded lithic fragments. We conclude that the temperature of the deposit at emplacement is unlikely to have been greater than 400° C, which further supports the interpretation of the pyroclastic deposits at Herculaneum as largely ignimbrites (hot pyroclastic flow deposits)
Polymorphisms in PTK2 are associated with skeletal muscle specific force: an independent replication study
Purpose
The aim of the study was to investigate two single nucleotide polymorphisms (SNP) in PTK2 for associations with human muscle strength phenotypes in healthy men.
Methods
Measurement of maximal isometric voluntary knee extension (MVCKE) torque, net MVCKE torque and vastus lateralis (VL) specific force, using established techniques, was completed on 120 Caucasian men (age = 20.6 ± 2.3 year; height = 1.79 ± 0.06 m; mass = 75.0 ± 10.0 kg; mean ± SD). All participants provided either a blood (n = 96) or buccal cell sample, from which DNA was isolated and genotyped for the PTK2 rs7843014 A/C and rs7460 A/T SNPs using real-time polymerase chain reaction.
Results
Genotype frequencies for both SNPs were in Hardy–Weinberg equilibrium (X 2 ≤ 1.661, P ≥ 0.436). VL specific force was 8.3% higher in rs7843014 AA homozygotes than C-allele carriers (P = 0.017) and 5.4% higher in rs7460 AA homozygotes than T-allele carriers (P = 0.029). No associations between either SNP and net MVCKE torque (P ≥ 0.094) or peak MVCKE torque (P ≥ 0.107) were observed.
Conclusions
These findings identify a genetic contribution to the inter-individual variability within muscle specific force and provides the first independent replication, in a larger Caucasian cohort, of an association between these PTK2 SNPs and muscle specific force, thus extending our understanding of the influence of genetic variation on the intrinsic strength of muscle.Published versio
Regulation of the High Affinity IgE Receptor (FcεRI) in Human Neutrophils: Role of Seasonal Allergen Exposure and Th-2 Cytokines
The high affinity IgE receptor, FcεRI, plays a key role in the immunological pathways involved in allergic asthma. Previously we have demonstrated that human neutrophils isolated from allergic asthmatics express a functional FcεRI, and therefore it was of importance to examine the factors regulating its expression. In this study, we found that neutrophils from allergic asthmatics showed increased expression of FcεRI-α chain surface protein, total protein and mRNA compared with those from allergic non asthmatics and healthy donors (p<0.001). Interestingly, in neutrophils isolated from allergic asthmatics, FcεRI-α chain surface protein and mRNA expression were significantly greater during the pollen season than outside the pollen season (n = 9, P = 0.001), an effect which was not observed either in the allergic non asthmatic group or the healthy donors (p>0.05). Allergen exposure did not affect other surface markers of neutrophils such as CD16/FcγRIII or IL-17R. In contrast to stimulation with IgE, neutrophils incubated with TH2 cytokines IL-9, GM-CSF, and IL-4, showed enhanced FcεRI-α chain surface expression. In conclusion, these results suggest that enhanced FcεRI expression in human neutrophils from allergic asthmatics during the pollen season can make them more susceptible to the biological effects of IgE, providing a possible new mechanism by which neutrophils contribute to allergic asthma
Evolutionary Processes Acting on Candidate cis-Regulatory Regions in Humans Inferred from Patterns of Polymorphism and Divergence
Analysis of polymorphism and divergence in the non-coding portion of the human genome yields crucial information about factors driving the evolution of gene regulation. Candidate cis-regulatory regions spanning more than 15,000 genes in 15 African Americans and 20 European Americans were re-sequenced and aligned to the chimpanzee genome in order to identify potentially functional polymorphism and to characterize and quantify departures from neutral evolution. Distortions of the site frequency spectra suggest a general pattern of selective constraint on conserved non-coding sites in the flanking regions of genes (CNCs). Moreover, there is an excess of fixed differences that cannot be explained by a Gamma model of deleterious fitness effects, suggesting the presence of positive selection on CNCs. Extensions of the McDonald-Kreitman test identified candidate cis-regulatory regions with high probabilities of positive and negative selection near many known human genes, the biological characteristics of which exhibit genome-wide trends that differ from patterns observed in protein-coding regions. Notably, there is a higher probability of positive selection in candidate cis-regulatory regions near genes expressed in the fetal brain, suggesting that a larger portion of adaptive regulatory changes has occurred in genes expressed during brain development. Overall we find that natural selection has played an important role in the evolution of candidate cis-regulatory regions throughout hominid evolution
- …