36 research outputs found

    Pollen and spores as biological recorders of past ultraviolet irradiance

    Get PDF
    Solar ultraviolet (UV) irradiance is a key driver of climatic and biotic change. Ultraviolet irradiance modulates stratospheric warming and ozone production, and influences the biosphere from ecosystem-level processes through to the largest scale patterns of diversification and extinction. Yet our understanding of ultraviolet irradiance is limited because no method has been validated to reconstruct its flux over timescales relevant to climatic or biotic processes. Here, we show that a recently developed proxy for ultraviolet irradiance based on spore and pollen chemistry can be used over long (105 years) timescales. Firstly we demonstrate that spatial variations in spore and pollen chemistry correlate with known latitudinal solar irradiance gradients. Using this relationship we provide a reconstruction of past changes in solar irradiance based on the pollen record from Lake Bosumtwi in Ghana. As anticipated, variations in the chemistry of grass pollen from the Lake Bosumtwi record show a link to multiple orbital precessional cycles (19-21 thousand years). By providing a unique, local proxy for broad spectrum solar irradiance, the chemical analysis of spores and pollen offers unprecedented opportunities to decouple solar variability, climate and vegetation change through geologic time and a new proxy with which to probe the Earth system

    A mechanism for lagged North Atlantic climate response to solar variability

    No full text
    Variability in solar irradiance has been connected to changes in surface climate in the North Atlantic through both observational and climate modelling studies which suggest a response in the atmospheric circulation that resembles the North Atlantic Oscillation or its hemispheric equivalent the Arctic Oscillation. It has also been noted that this response appears to follow the changes in solar irradiance by a few years, depending on the exact indicator of solar variability. Here we propose and test a mechanism for this lag based on the known impact of atmospheric circulation on the Atlantic Ocean, the extended memory of ocean heat content anomalies, and their subsequent feedback onto the atmosphere. We use results from climate model experiments to develop a simple model for the relationship between solar variability and North Atlantic climate. © 2013. American Geophysical Union. All Rights Reserved

    Solar forcing of winter climate variability in the Northern Hemisphere

    No full text
    An influence of solar irradiance variations on Earth's surface climate has been repeatedly suggested, based on correlations between solar variability and meteorological variables1. Specifically, weaker westerly winds have been observed in winters with a less active sun, for example at the minimum phase of the 11-year sunspot cycle2-4. With some possible exceptions5,6, it has proved difficult for climate models to consistently reproduce this signal7,8. Spectral Irradiance Monitor satellite measurements indicate that variations in solar ultraviolet irradiance may be larger than previously thought9. Here we drive an ocean - atmosphere climate model with ultraviolet irradiance variations based on these observations. We find that the model responds to the solar minimum with patterns in surface pressure and temperature that resemble the negative phase of the North Atlantic or Arctic Oscillation, of similar magnitude to observations. In our model, the anomalies descend through the depth of the extratropical winter atmosphere. If the updated measurements of solar ultraviolet irradiance are correct, low solar activity, as observed during recent years, drives cold winters in northern Europe and the United States, and mild winters over southern Europe and Canada, with little direct change in globally averaged temperature. Given the quasiregularity of the 11-year solar cycle, our findings may help improve decadal climate predictions for highly populated extratropical regions. © 2011 Macmillan Publishers Limited. All rights reserved
    corecore