32 research outputs found

    The Early Data Release of the Dark Energy Spectroscopic Instrument

    Get PDF
    \ua9 2024. The Author(s). Published by the American Astronomical Society. The Dark Energy Spectroscopic Instrument (DESI) completed its 5 month Survey Validation in 2021 May. Spectra of stellar and extragalactic targets from Survey Validation constitute the first major data sample from the DESI survey. This paper describes the public release of those spectra, the catalogs of derived properties, and the intermediate data products. In total, the public release includes good-quality spectral information from 466,447 objects targeted as part of the Milky Way Survey, 428,758 as part of the Bright Galaxy Survey, 227,318 as part of the Luminous Red Galaxy sample, 437,664 as part of the Emission Line Galaxy sample, and 76,079 as part of the Quasar sample. In addition, the release includes spectral information from 137,148 objects that expand the scope beyond the primary samples as part of a series of secondary programs. Here, we describe the spectral data, data quality, data products, Large-Scale Structure science catalogs, access to the data, and references that provide relevant background to using these spectra

    Oestrogen effects on urine concentrating response in young women

    No full text
    Oestrogen lowers the plasma osmotic threshold for arginine vasopressin (AVP) release but without commensurate changes in renal concentrating response, suggesting oestrogen (OE2) may lower renal sensitivity to AVP. Ten women (23 ± 1 years) received a gonadotropin releasing hormone analogue (GnRHa), leuprolide acetate, to suppress OE2 for 35 days, and then added OE2 (two patches each delivering 0.1 mg day−1) on days 32–35. On days 28 and 35 we tested blood and renal water and sodium (Na+) regulation during stepwise 60 min AVP infusions (10, 35, 100, 150 and 200 μu (kg body weight)−1 Pitressin). Plasma OE2 concentration increased from 19 ± 4 to 152 ± 3 pg ml−1 and plasma progesterone concentration was unchanged (1.0 ± 0.4 and 0.7 ± 0.1 ng ml−1) for GnRHa and OE2 administration, respectively. Standard log plots of plasma AVP concentration ([AVP]P) vs. urine osmolality (OsmU) were fitted to a sigmoidal curve, and EC50 was determined by non-linear regression curve fitting of concentration-response data. OsmU rose exponentially during AVP infusions, but hormone treatments did not affect EC50 (3.3 ± 0.07 and 3.1 ± 0.6 pg ml−1, for GnRHa and OE2, respectively). However, the urine osmolality increase was greater within the physiological range (˜2.5−3.4 pg ml−1[AVP]P) during OE2 treatment. Throughout most of the AVP infusion, the rate of clearance of AVP from plasma (PCRAVP) was increased during OE2 (45.5 ml (kg body weight)−1 min−1) compared to GnRHa administration (33.1 ml (kg body weight)−1 min−1; mean for the 100–200 μu (kg body weight)−1 infusion rates). The rate of renal free water clearance (CH2O) was similar between hormone treatments. Sodium excretion fell during OE2 administration due to greater distal tubular sodium reabsorption. Despite more rapid PCRAVP, renal concentrating response to graded AVP infusions was unaffected by oestrogen treatment suggesting oestrogen does not affect overall renal sensitivity to AVP. However, OE2 may increase renal fluid retention within a physiological range of AVP
    corecore