70 research outputs found

    Targeted Molecular Imaging in Adrenal Disease—An Emerging Role for Metomidate PET-CT

    Get PDF
    Adrenal lesions present a significant diagnostic burden for both radiologists and endocrinologists, especially with the increasing number of adrenal 'incidentalomas' detected on modern computed tomography (CT) or magnetic resonance imaging (MRI). A key objective is the reliable distinction of benign disease from either primary adrenal malignancy (e.g., adrenocortical carcinoma or malignant forms of pheochromocytoma/paraganglioma (PPGL)) or metastases (e.g., bronchial, renal). Benign lesions may still be associated with adverse sequelae through autonomous hormone hypersecretion (e.g., primary aldosteronism, Cushing's syndrome, phaeochromocytoma). Here, identifying a causative lesion, or lateralising the disease to a single adrenal gland, is key to effective management, as unilateral adrenalectomy may offer the potential for curing conditions that are typically associated with significant excess morbidity and mortality. This review considers the evolving role of positron emission tomography (PET) imaging in addressing the limitations of traditional cross-sectional imaging and adjunctive techniques, such as venous sampling, in the management of adrenal disorders. We review the development of targeted molecular imaging to the adrenocortical enzymes CYP11B1 and CYP11B2 with different radiolabeled metomidate compounds. Particular consideration is given to iodo-metomidate PET tracers for the diagnosis and management of adrenocortical carcinoma, and the increasingly recognized utility of 11^{11}C-metomidate PET-CT in primary aldosteronism.NIHR Cambridge Biomedical Research Centr

    99mTc-IgG-Lung Scintigraphy in the Assessment of Pulmonary Involvement in Interstitial Lung Disease and Its Comparison With Pulmonary Function Tests and High-Resolution Computed Tomography: A Preliminary Study

    Get PDF
    Background: The discrimination of inactive inflammatory processes from the active form of the disease is of great importance in the management of interstitial lung disease (ILD). Objectives: The aim of this study was to determine the efficacy of 99mTc-IgG scan for the detection of severity of disease compared to high-resolution computed tomography (HRCT) and pulmonary function test (PFT). Patients and Methods: Eight known cases of ILD including four cases of Mustard gas (MG) intoxication and four patients with ILD of unknown cause were included in this study. A population of six patients without lung disease was considered as the control group. The patients underwent PFT and high-resolution computed tomography scan, followed by 99mTc-IgG scan. They were followed up for one year. 99mTc-IgG scan assessment of IgG uptake was accomplished both qualitatively (subjectively) and semiquantitatively. Results: All eight ILD patients demonstrated a strong increase in 99mTc-IgG uptake in the lungs, compared to the control patients. The 99mTc-IgG scan scores were higher in the patient group (0.64[95% confidence interval (CI)=0.61-0.69])) than the control group (0.35 (0.35[95% CI=0.28-0.40]), (P 0.05). There were no significant correlations between 99mTc-IgG score and HRCT patterns including ground glass opacity, reticular fibrosis and honeycombing (P value > 0.05). Conclusion: The present results confirmed that 99mTc-IgG scan could be applied to detect the severity of pulmonary involvement, which was well correlated with HRCT findings. This data also showed that the 99mTc-IgG scan might be used as a complement to HRCT in the functional evaluation of the clinical status in ILD; however, further studies are recommended

    Clinical perspectives on dosimetry in molecular radiotherapy

    Get PDF
    Molecular radiotherapy is the use of systemically administered unsealed radioactive sources to treat cancer. Theragnostics is the term used to describe paired radiopharmaceuticals localising to a specific target, one optimised for imaging, the other for therapy. For many decades, molecular radiotherapy has developed empirically. Standard administered activity schedules have been used without the prior estimation of the resulting tumour radiation absorbed dose by theragnostic imaging, or its subsequent measurement by serial scanning. This pragmatic approach has benefited many patients, however others who should have benefited have failed to do so as the radiation absorbed dose in the tumour was suboptimal. The accurate prediction and measurement of tumour and organ at risk radiation absorbed doses allows treatment to be personalised, and offers the prospect of improved clinical outcomes. To deliver this for all molecular radiotherapy patients would require not only a significant financial investment in equipment and skilled personnel, but also a change in attitude of those who believe that simple – or simplistic – schedules are easier to deliver, and that accurate dosimetry is too much trouble. Further clinical studies are required to demonstrate beyond doubt that the advantages of individualised treatment planning outweigh the inconvenience, and that the expense is justified by enhanced results

    Combined approach of perioperative 18F-FDG PET/CT imaging and intraoperative 18F-FDG handheld gamma probe detection for tumor localization and verification of complete tumor resection in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) positron emission tomography/computed tomography (PET/CT) has become an established method for detecting hypermetabolic sites of known and occult disease and is widely used in oncology surgical planning. Intraoperatively, it is often difficult to localize tumors and verify complete resection of tumors that have been previously detected on diagnostic PET/CT at the time of the original evaluation of the cancer patient. Therefore, we propose an innovative approach for intraoperative tumor localization and verification of complete tumor resection utilizing <sup>18</sup>F-FDG for perioperative PET/CT imaging and intraoperative gamma probe detection.</p> <p>Methods</p> <p>Two breast cancer patients were evaluated. <sup>18</sup>F-FDG was administered and PET/CT was acquired immediately prior to surgery. Intraoperatively, tumors were localized and resected with the assistance of a handheld gamma probe. Resected tumors were scanned with specimen PET/CT prior to pathologic processing. Shortly after the surgical procedure, patients were re-imaged with PET/CT utilizing the same preoperatively administered <sup>18</sup>F-FDG dose.</p> <p>Results</p> <p>One patient had primary carcinoma of breast and a metastatic axillary lymph node. The second patient had a solitary metastatic liver lesion. In both cases, preoperative PET/CT verified these findings and demonstrated no additional suspicious hypermetabolic lesions. Furthermore, intraoperative gamma probe detection, specimen PET/CT, and postoperative PET/CT verified complete resection of the hypermetabolic lesions.</p> <p>Conclusion</p> <p>Immediate preoperative and postoperative PET/CT imaging, utilizing the same <sup>18</sup>F-FDG injection dose, is feasible and image quality is acceptable. Such perioperative PET/CT imaging, along with intraoperative gamma probe detection and specimen PET/CT, can be used to verify complete tumor resection. This innovative approach demonstrates promise for assisting the oncologic surgeon in localizing and verifying resection of <sup>18</sup>F-FDG positive tumors and may ultimately positively impact upon long-term patient outcomes.</p

    Planar Tc99m – sestamibi scintimammography should be considered cautiously in the axillary evaluation of breast cancer protocols: Results of an international multicenter trial

    Get PDF
    BACKGROUND: Lymph node status is the most important prognostic indicator in breast cancer in recently diagnosed primary lesion. As a part of an interregional protocol using scintimammography with Tc99m compounds, the value of planar Tc99m sestamibi scanning for axillary lymph node evaluation is presented. Since there is a wide range of reported values, a standardized protocol of planar imaging was performed. METHODS: One hundred and forty-nine female patients were included prospectively from different regions. Their mean age was 55.1 ± 11.9 years. Histological report was obtained from 2.987 excised lymph nodes from 150 axillas. An early planar chest image was obtained at 10 min in all patients and a delayed one in 95 patients, all images performed with 740–925 MBq dose of Tc99m sestamibi. Blind lecture of all axillary regions was interpreted by 2 independent observers considering any well defined focal area of increased uptake as an involved axilla. Diagnostic values, 95% confidence intervals [CI] and also likelihood ratios (LR) were calculated. RESULTS: Node histology demonstrated tumor involvement in 546 out of 2987 lymph nodes. Sestamibi was positive in 30 axillas (25 true-positive) and negative in 120 (only 55 true-negative). The sensitivity corresponded to 27.8% [CI = 18.9–38.2] and specificity to 91.7% [81.6–97.2]. The positive and negative LR were 3.33 and 0.79, respectively. There was no difference between early and delayed images. Sensitivity was higher in patients with palpable lesions. CONCLUSION: This work confirmed that non tomographic Tc99m sestamibi scintimammography had a very low detection rate for axillary lymph node involvement and it should not be applied for clinical assessment of breast cancer

    Assessment of the efficacy and toxicity of 131I-metaiodobenzylguanidine therapy for metastatic neuroendocrine tumours

    Get PDF
    131I-metaiodobenzylguanidine (131I-MIBG) is a licensed palliative treatment for patients with metastatic neuroendocrine tumours. We have retrospectively assessed the consequences of 131I-MIBG therapy in 48 patients (30 gastroenteropancreatic, 6 pulmonary, 12 unknown primary site) with metastatic neuroendocrine tumours attending Royal Liverpool University Hospital between 1996 and 2006. Mean age at diagnosis was 57.6 years (range 34–81). 131I-MIBG was administered on 88 occasions (mean 1.8 treatments, range 1–4). Twenty-nine patients had biochemical markers measured before and after 131I-MIBG, of whom 11 (36.7%) showed >50% reduction in levels post-therapy. Forty patients had radiological investigations performed after 131I-MIBG, of whom 11(27.5%) showed reduction in tumour size post-therapy. Twenty-seven (56.3%) patients reported improved symptoms after 131I-MIBG therapy. Kaplan–Meier analysis showed significantly increased survival (P=0.01) from the date of first 131I-MIBG in patients who reported symptomatic benefit from therapy. Patients with biochemical and radiological responses did not show any statistically significant alteration in survival compared to non-responders. Eleven (22.9%) patients required hospitalisation as a consequence of complications, mostly due to mild bone marrow suppression. 131I-MIBG therefore improved symptoms in more than half of the patients with metastatic neuroendocrine tumours and survival was increased in those patients who reported a symptomatic response to therapy

    Neoadjuvant chemotherapy in breast cancer: early response prediction with quantitative MR imaging and spectroscopy.

    Get PDF
    A prospective study was undertaken in women undergoing neoadjuvant chemotherapy for locally advanced breast cancer in order to determine the ability of quantitative magnetic resonance imaging (MRI) and proton spectroscopy (MRS) to predict ultimate tumour response (percentage decrease in volume) or to detect early response. Magnetic resonance imaging and MRS were carried out before treatment and after the second of six treatment cycles. Pharmacokinetic parameters were derived from T1-weighted dynamic contrast-enhanced MRI, water apparent diffusion coefficient (ADC) was measured, and tissue water:fat peak area ratios and water T2 were measured using unsuppressed one-dimensional proton spectroscopic imaging (30 and 135 ms echo times). Pharmacokinetic parameters and ADC did not detect early response; however, early changes in water:fat ratios and water T2 (after cycle two) demonstrated substantial prognostic efficacy. Larger decreases in water T2 accurately predicted final volume response in 69% of cases (11/16) while maintaining 100% specificity and positive predictive value. Small/absent decreases in water:fat ratios accurately predicted final volume non-response in 50% of cases (3/6) while maintaining 100% sensitivity and negative predictive value. This level of accuracy might permit clinical application where early, accurate prediction of non-response would permit an early change to second-line treatment, thus sparing patients unnecessary toxicity, psychological morbidity and delay of initiation of effective treatment

    Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts

    Get PDF
    Purpose: Prostate cancer (PC) is a major health problem. Overexpression of the gastrin-releasing peptide receptor (GRPR) in PC, but not in the hyperplastic prostate, provides a promising target for staging and monitoring of PC. Based on the assumption that cancer cells have increased metabolic activity, metabolism-based tracers are also being used for PC imaging. We compared GRPR-based targeting using the68Ga-labelled bombesin analogue AMBA with metabolism-based tar

    Diagnostic Accuracy of a Convolutional Neural Network Assessment of Solitary Pulmonary Nodules Compared With PET With CT Imaging and Dynamic Contrast-Enhanced CT Imaging Using Unenhanced and Contrast-Enhanced CT Imaging

    Get PDF
    Background: Solitary pulmonary nodules (SPNs) measuring 8 to 30 mm in diameter require further workup to determine the likelihood of malignancy. Research Question: What is the diagnostic performance of a lung cancer prediction convolutional neural network (LCP-CNN) in SPNs using unenhanced and contrast-enhanced CT imaging compared with the current clinical workup? Study Design and Methods: This was a post hoc analysis of the Single Pulmonary Nodule Investigation: Accuracy and Cost-Effectiveness of Dynamic Contrast Enhanced Computed Tomography in the Characterisation of Solitary Pulmonary Nodules trial, a prospective multicenter study comparing the diagnostic accuracy of dynamic contrast-enhanced (DCE) CT imaging with PET imaging in SPNs. The LCP-CNN was designed and validated in an external cohort. LCP-CNN-generated risk scores were created from the noncontrast and contrast-enhanced CT scan images from the DCE CT imaging. The gold standard was histologic analysis or 2 years of follow-up. The area under the receiver operating characteristic curves (AUC) were calculated using LCP-CNN score, maximum standardized uptake value, and DCE CT scan maximum enhancement and were compared using the DeLong test. Results: Two hundred seventy participants (mean ± SD age, 68.3 ± 8.8 years; 49% women) underwent PET with CT scan imaging and DCE CT imaging with CT scan data available centrally for LCP-CNN analysis. The accuracy of the LCP-CNN on the noncontrast images (AUC, 0.83; 95% CI, 0.79-0.88) was superior to that of DCE CT imaging (AUC, 0.76; 95% CI, 0.69-0.82; P = .03) and equal to that of PET with CT scan imaging (AUC, 0.86; 95% CI, 0.81-0.90; P = .35). The presence of contrast resulted in a small reduction in diagnostic accuracy, with the AUC falling from 0.83 (95% CI, 0.79-0.88) on the noncontrast images to 0.80 to 0.83 after contrast (P < .05 for 240 s after contrast only). Interpretation: An LCP-CNN algorithm provides an AUC equivalent to PET with CT scan imaging in the diagnosis of solitary pulmonary nodules. Trial Registration: ClinicalTrials.gov Identifier; No.: NCT0201306
    corecore