1,964 research outputs found

    Super-resolution imaging as a method to study GPCR dimers and higher-order oligomers

    Get PDF
    The study of G protein-coupled receptor (GPCR) dimers and higher-order oligomers has unveiled mechanisms for receptors to diversify signaling and potentially uncover novel therapeutic targets. The functional and clinical significance of these receptor–receptor associations has been facilitated by the development of techniques and protocols, enabling researchers to unpick their function from the molecular interfaces, to demonstrating functional significance in vivo, in both health and disease. Here we describe our methodology to study GPCR oligomerization at the single-molecule level via super-resolution imaging. Specifically, we have employed photoactivated localization microscopy, with photoactivatable dyes (PD-PALM) to visualize the spatial organization of these complexes to <10 nm resolution, and the quantitation of GPCR monomer, dimer, and oligomer in both homomeric and heteromeric forms. We provide guidelines on optimal sample preparation, imaging parameters, and necessary controls for resolving and quantifying single-molecule data. Finally, we discuss advantages and limitations of this imaging technique and its potential future applications to the study of GPCR function

    The connection between stellar activity cycles and magnetic field topology

    Get PDF
    Zeeman–Doppler imaging (ZDI) has successfully mapped the large-scale magnetic fields of stars over a large range of spectral types, rotation periods and ages. When observed over multiple epochs, some stars show polarity reversals in their global magnetic fields. On the Sun, polarity reversals are a feature of its activity cycle. In this paper, we examine the magnetic properties of stars with existing chromospherically determined cycle periods. Previous authors have suggested that cycle periods lie on multiple branches, either in the cycle period–Rossby number plane or the cycle period–rotation period plane. We find some evidence that stars along the active branch show significant average toroidal fields that exhibit large temporal variations while stars exclusively on the inactive branch remain dominantly poloidal throughout their entire cycle. This lends credence to the idea that different shear layers are in operation along each branch. There is also evidence that the short magnetic polarity switches observed on some stars are characteristic of the inactive branch while the longer chromospherically determined periods are characteristic of the active branch. This may explain the discrepancy between the magnetic and chromospheric cycle periods found on some stars. These results represent a first attempt at linking global magnetic field properties obtained from ZDI and activity cycles.Publisher PDFPeer reviewe

    Brainstem Respiratory Oscillators Develop Independently of Neuronal Migration Defects in the Wnt/PCP Mouse Mutant looptail

    Get PDF
    The proper development and maturation of neuronal circuits require precise migration of component neurons from their birthplace (germinal zone) to their final positions. Little is known about the effects of aberrant neuronal position on the functioning of organized neuronal groups, especially in mammals. Here, we investigated the formation and properties of brainstem respiratory neurons in looptail (Lp) mutant mice in which facial motor neurons closely apposed to some respiratory neurons fail to migrate due to loss of function of the Wnt/Planar Cell Polarity (PCP) protein Vangl2. Using calcium imaging and immunostaining on embryonic hindbrain preparations, we found that respiratory neurons constituting the embryonic parafacial oscillator (e-pF) settled at the ventral surface of the medulla in Vangl2Lp/+ and Vangl2Lp/Lp embryos despite the failure of tangential migration of its normally adjacent facial motor nucleus. Anatomically, the e-pF neurons were displaced medially in Lp/+ embryos and rostro-medially Lp/Lp embryos. Pharmacological treatments showed that the e-pF oscillator exhibited characteristic network properties in both Lp/+ and Lp/Lp embryos. Furthermore, using hindbrain slices, we found that the other respiratory oscillator, the preBötzinger complex, was also anatomically and functionally established in Lp mutants. Importantly, the displaced e-pF oscillator established functional connections with the preBötC oscillator in Lp/+ mutants. Our data highlight the robustness of the developmental processes that assemble the neuronal networks mediating an essential physiological function

    Hidden chromosomal abnormalities in pleuropulmonary blastomas identified by multiplex FISH

    Get PDF
    BACKGROUND: Pleuropulmonary blastoma (PPB) is a rare childhood dysontogenetic intrathoracic neoplasm associated with an unfavourable clinical behaviour. CASES PRESENTATION: We report pathological and cytogenetic findings in two cases of PPB at initial diagnosis and recurrence. Both tumors were classified as type III pneumoblastoma and histological findings were similar at diagnosis and relapse. In both cases, conventional cytogenetic techniques revealed complex numerical and structural chromosomal abnormalities. Molecular cytogenetic analysis (interphase/metaphase FISH and multicolor FISH) identified accurately chromosomal aberrations. In one case, TP53 gene deletion was detected on metaphase FISH. To date, only few cytogenetic data have been published about PPB. CONCLUSION: The PPB genetic profile remains to be established and compared to others embryonal neoplasia. Our cytogenetic data are discussed reviewing cytogenetics PPBs published cases, illustrating the contribution of multicolor FISH in order to identify pathogenetically important recurrent aberrations in PPB

    Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors

    Get PDF
    Delta-9-tetrahydrocannabinol (THC), the main psychoactive compound of marijuana, induces numerous undesirable effects, including memory impairments, anxiety, and dependence. Conversely, THC also has potentially therapeutic effects, including analgesia, muscle relaxation, and neuroprotection. However, the mechanisms that dissociate these responses are still not known. Using mice lacking the serotonin receptor 5-HT2A, we revealed that the analgesic and amnesic effects of THC are independent of each other: while amnesia induced by THC disappears in the mutant mice, THC can still promote analgesia in these animals. In subsequent molecular studies, we showed that in specific brain regions involved in memory formation, the receptors for THC and the 5-HT2A receptors work together by physically interacting with each other. Experimentally interfering with this interaction prevented the memory deficits induced by THC, but not its analgesic properties. Our results highlight a novel mechanism by which the beneficial analgesic properties of THC can be dissociated from its cognitive side effects

    Short-term follow-up of chagasic patients after benznidazole treatment using multiple serological markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conventional serological tests, using total soluble proteins or a cocktail of recombinant proteins from <it>T. cruzi </it>as antigens, are highly sensitive for Chagas disease diagnosis. This type of tests, however, does not seem to be reliable tools for short- and medium-term monitoring of the evolution of patients after antiparasitic treatment. The aim of the present study was to search for immunological markers that could be altered in the sera from Chagas disease patients after benznidazole treatment, and therefore have a potential predictive diagnostic value.</p> <p>Methods</p> <p>We analyzed the reactivity of sera from chagasic patients during different clinical phases of the disease against a series of immunodominant antigens, known as KMP11, PFR2, HSP70 and Tgp63. The reactivity of the sera from 46 adult Chronic Chagas disease patients living in a non-endemic country without vector transmission of <it>T. cruzi </it>(15 patients in the indeterminate stage, 16 in the cardiomiopathy stage and 16 in the digestive stage) and 22 control sera from non-infected subjects was analyzed. We also analyzed the response dynamics of sera from those patients who had been treated with benznidazole.</p> <p>Results</p> <p>Regardless of the stage of the sickness, the sera from chagasic patients reacted against KMP11, HSP70, PFR2 and Tgp63 recombinant proteins with statistical significance relative to the reactivity against the same antigens by the sera from healthy donors, patients with autoimmune diseases or patients suffering from tuberculosis, leprosy or malaria. Shortly after benznidazole treatment, a statistically significant decrease in reactivity against KMP11, HSP70 and PFR2 was observed (six or nine month). It was also observed that, following benznidazole treatment, the differential reactivity against these antigens co-relates with the clinical status of the patients.</p> <p>Conclusions</p> <p>The recombinant antigens KMP11, PFR2, Tgp63 and HSP70 are recognized by Chagas disease patients' sera at any clinical stage of the disease. Shortly after benznidazole treatment, a drop in reactivity against three of these antigens is produced in an antigen-specific manner. Most likely, analysis of the reactivity against these recombinant antigens may be useful for monitoring the effectiveness of benznidazole treatment.</p

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279

    Get PDF
    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10^5 gravitational radii.Comment: Published in Nature issued on 18 February 2010. Corresponding authors: Masaaki Hayashida and Greg Madejsk

    Mutually Positive Regulatory Feedback Loop between Interferons and Estrogen Receptor-α in Mice: Implications for Sex Bias in Autoimmunity

    Get PDF
    gene) and stimulates expression of target genes. female mice had relatively higher steady-state levels of mRNAs encoded by the IFN and ERα-responsive genes as compared to the age-matched males.Our observations identify a novel mutually positive regulatory feedback loop between IFNs and ERα in immune cells in mice and support the idea that activation of this regulatory loop contributes to sex bias in SLE
    corecore