31 research outputs found

    Supraspinal fatigue in human inspiratory muscles with repeated sustained maximal efforts

    Full text link
    To investigate the involvement of supraspinal fatigue in the loss of maximal inspiratory pressure (PImax), we fatigued the inspiratory muscles. Six participants performed 5 sustained maximal isometric inspiratory efforts (15-s contractions, duty cycle ~75%) which reduced PImax, as measured from esophageal and mouth pressure, to around half of their initial maximums. Transcranial magnetic stimulation (TMS) delivered over the motor cortex near the beginning and end of each maximal effort evoked superimposed twitch-like increments in the ongoing PImax, increasing from ~1.0% of PImax in the unfatigued contractions to ≥40% of ongoing PImax for esophageal and mouth pressures. The rate of increase in the superimposed twitch as PImax decreased with fatigue was not significantly different between the esophageal and mouth pressure measures. The inverse relationship between superimposed twitch pressure and PImax indicates a progressive decline in the ability of motor cortical output to drive the inspiratory muscles maximally, leading to the development of supraspinal fatigue. TMS also evoked silent periods in the electromyographic recordings of diaphragm, scalenes, and parasternal intercostal. The duration of the silent period increased with fatigue in all three muscles, which suggests greater intracortical inhibition, with the largest change observed in the diaphragm. The peak rate of relaxation in pressure during the silent period slowed as fatigue developed, indicating peripheral contractile changes in the active inspiratory muscles. These changes in the markers of fatigue show that both central and peripheral fatigue contribute to the loss in PImax when inspiratory muscles are fatigued with repeated sustained maximal efforts. NEW & NOTEWORTHY When the inspiratory muscles are fatigued with repeated sustained maximal efforts, supraspinal fatigue, a component of central fatigue, contributes to the loss in maximal inspiratory pressure. The presence of supraspinal fatigue was confirmed by the increase in amplitude of twitch-like increments in pressure evoked by motor cortical stimulation during maximal efforts, indicating that motor cortical output was not maximal as extra muscle force could be generated to increase inspiratory pressure

    Effects of tongue position and lung volume on voluntary maximal tongue protrusion force in humans

    Full text link
    Maximal voluntary protrusion force of the human tongue has not been examined in positions beyond the incisors or at different lung volumes. Tongue force was recorded with the tongue tip at eight positions relative to the incisors (12 and 4. mm protrusion, neutral and 4, 12, 16, 24 and 32. mm retraction) at functional residual capacity (FRC), total lung capacity (TLC) and residual volume (RV) in 15 healthy subjects. Maximal force occurred between 12. mm and 32. mm retraction (median 16. mm). Maximum force at FRC was reproducible at the optimal tongue position across sessions (P=. 0.68). Across all positions at FRC the average force was highest at 24. mm retraction (28.3. ±. 5.3. N, mean. ±. 95% CI) and lowest at 12. mm protrusion (49.1. ±. 4.6% maximum; P<. 0.05). Across all tongue positions, maximal force was on average 9.3% lower at FRC than TLC and RV (range: 4.5-12.7% maximum, P<. 0.05). Retracted positions produce higher-force protrusions with a small effect of lung volume

    New display of the timing and firing frequency of single motor units

    Full text link
    The neural control of important rhythmical processes such as breathing and locomotion is complex. It is often necessary to depict the activity of motor (or other) units throughout the cycles. We describe and illustrate a novel method that displays visually seven key variables in a single figure related to the timing and frequencies of the discharge of single motor units. This time-and-frequency plot (TAFPLOT) displays the recruitment time, time of peak discharge frequency and derecruitment time, as well as the onset, peak, and final firing frequencies of each motor unit in a population. The frequency of any tonic firing is also displayed. Using the TAFPLOT it is easy to identify the presence or absence of coordinated activity within and between different motoneuron pools. The method is used to illustrate novel differences in the discharge behavior between populations of single motor units innervating the human diaphragm and genioglossus muscles. This new display provides a simple, qualitative and quantitative tool to study the neural control of rhythmical or repetitive motor tasks. (C) 2007 Elsevier B.V. All rights reserved

    Motor unit territories in human genioglossus estimated with multichannel intramuscular electrodes

    Get PDF
    The discharge patterns of genioglossus motor units during breathing have been well-characterized in previous studies, but their localization and territories are not known. In this study, we used two newly developed intramuscular multichannel electrodes to estimate the territories of genioglossus motor units in the anterior and posterior regions of the muscle. Seven healthy men participated. Each electrode contained fifteen bipolar channels, separated by 1 mm, and was inserted percutaneously below the chin, perpendicular to the skin, to a depth of 36 mm. Single motor unit activity was recorded with subjects awake, supine, and breathing quietly through a nasal mask for 180 s. Motor unit territories were estimated from the spike-triggered averages of the electromyographic signal from each channel. A total of 30 motor units were identified: 22 expiratory tonic, 1 expiratory phasic, 2 tonic, 3 inspiratory tonic, and 2 inspiratory phasic. Motor units appeared to be clustered based on unit type, with peak activities for expiratory units predominantly located in the anterior and superficial fibers of genioglossus and inspiratory units in the posterior region. Of these motor unit types, expiratory tonic units had the largest estimated territory, a mean 11.3 mm (SD 1.9). Estimated territories of inspiratory motor units ranged from 3 to 6 mm. In accordance with the distribution of motor unit types, the estimated territory of genioglossus motor units varied along the sagittal plane, decreasing from anterior to posterior. Our findings suggest that genioglossus motor units have large territories relative to the cross-sectional size of the muscle

    Recruitment and rate-coding strategies of the human genioglossus muscle

    No full text
    Single motor unit (SMU) analysis provides a means to examine the motor control of a muscle. SMUs in the genioglossus show considerable complexity, with several different firing patterns. Two of the primary stimuli that contribute to genioglossal activation are carbon dioxide (CO2) and negative pressure, which act through chemoreceptor and mechanoreceptor activation, respectively. We sought to determine how these stimuli affect the behavior of genioglossus SMUs. We quantified genioglossus SMU discharge activity during periods of quiet breathing, elevated CO2 (facilitation), and continuous positive airway pressure (CPAP) administration (inhibition). CPAP was applied in 2-cmH2O increments until 10 cmH2O during hypercapnia. Five hundred ninety-one periods (each ∼3 breaths) of genioglossus SMU data were recorded using wire electrodes(n = 96 units) from 15 awake, supine subjects. Overall hypercapnic stimulation increased the discharge rate of genioglossus units (20.9 ± 1.0 vs. 22.7 ± 0.9 Hz). Inspiratory units were activated ∼13% earlier in the inspiratory cycle, and the units fired for a longer duration (80.6 ± 5.1 vs. 105.3 ± 4.2% inspiratory time; P < 0.05). Compared with baseline, an additional 32% of distinguishable SMUs within the selective electrode recording area were recruited with hypercapnia. CPAP led to progressive SMU inhibition; at ∼6 cmH2O, there were similar numbers of SMUs active compared with baseline, with peak frequencies of inspiratory units close to baseline, despite elevated CO2 levels. At 10 cmH2O, the number of units was 36% less than baseline. Genioglossus inspiratory phasic SMUs respond to hypercapnic stimulation with changes in recruitment and rate coding. The SMUs respond to CPAP with derecruitment as a homogeneous population, and inspiratory phasic units show slower discharge rates. Understanding upper airway muscle recruitment/derecruitment may yield therapeutic targets for maintenance of pharyngeal patency

    Physiological mechanisms of upper airway hypotonia during REM sleep

    No full text
    Study Objectives: Rapid eye movement (REM)-induced hypotonia of the major upper airway dilating muscle (genioglossus) potentially contributes to the worsening of obstructive sleep apnea that occurs during this stage. No prior human single motor unit (SMU) study of genioglossus has examined this possibility to our knowledge. We hypothesized that genioglossus SMUs would reduce their activity during stable breathing in both tonic and phasic REM compared to stage N2 sleep. Further, we hypothesized that hypopneas occurring in REM would be associated with coincident reductions in genioglossus SMU activity. Design: The activity of genioglossus SMUs was studied in (1) neighboring epochs of stage N2, and tonic and phasic REM; and (2) during hypopneas occurring in REM. Setting: Sleep laboratory. Participants: 29 subjects (38 ± 13 y) (17 male). Intervention: Natural sleep, including REM sleep and REM hypopneas. Measurement and Results: Subjects slept overnight with genioglossus fine-wire intramuscular electrodes and full polysomnography. Forty-two SMUs firing during one or more of stage N2, tonic REM, or phasic REM were sorted. Twenty inspiratory phasic (IP), 17 inspiratory tonic (IT), and five expiratory tonic (ET) SMUs were characterized. Fewer units were active during phasic REM (23) compared to tonic REM (30) and stage N2 (33). During phasic REM sleep, genioglossus IP and IT SMUs discharged at slower rates and for shorter durations than during stage N2. For example, the SMU peak frequency during phasic REM 5.7 ± 6.6 Hz (mean ± standard deviation) was less than both tonic REM 12.3 ± 9.7 Hz and stage N2 16.1 ± 10.0 Hz (P < 0.001). The peak firing frequencies of IP/IT SMUs decreased from the last breath before to the first breath of a REM hypopnea (11.8 ± 10.9 Hz versus 5.7 ± 9.4 Hz; P = 0.001) Conclusion: Genioglossus single motor unit activity is significantly reduced in REM sleep, particularly phasic REM. Single motor unit activity decreases abruptly at the onset of REM hypopneas

    A Mechanism for upper airway stability during slow wave sleep

    No full text
    Study Objectives: The severity of obstructive sleep apnea is diminished (sometimes markedly) during slow wave sleep (SWS). We sought to understand why SWS stabilizes the upper airway. Increased single motor unit (SMU) activity of the major upper airway dilating muscle (genioglossus) should improve upper airway stability. Therefore, we hypothesized that genioglossus SMUs would increase their activity during SWS in comparison with Stage N2 sleep. Design: The activity of genioglossus SMUs was studied on both sides of the transition between Stage N2 sleep and SWS. Setting: Sleep laboratory. Participants: Twenty-nine subjects (age 38 ± 13 yr, 17 males) were studied. Intervention: SWS. Measurement and Results: Subjects slept overnight with fine-wire electrodes in their genioglossus muscles and with full polysomnographic and end tidal carbon dioxide monitors. Fifteen inspiratory phasic (IP) and 11 inspiratory tonic (IT) units were identified from seven subjects and these units exhibited significantly increased inspiratory discharge frequencies during SWS compared with Stage N2 sleep. The peak discharge frequency of the inspiratory units (IP and IT) was 22.7 ± 4.1 Hz in SWS versus 20.3 ± 4.5 Hz in Stage N2 (P < 0.001). The IP units also fired for a longer duration (expressed as a percentage of inspiratory time) during SWS (104.6 ± 39.5 %TI) versus Stage N2 sleep (82.6 ± 39.5 %TI, P < 0.001). The IT units fired faster during expiration in SWS (14.2 ± 1.8 Hz) versus Stage N2 sleep (12.6 ± 3.1 Hz, P = 0.035). There was minimal recruitment or derecruitment of units between SWS and Stage N2 sleep. Conclusion: Increased genioglossus SMU activity likely makes the airway more stable and resistant to collapse throughout the respiratory cycle during SWS

    Application of oxygen on gagging patients with sleep disordered breathing: ten year retrospective study

    No full text
    Introduction Application of pure oxygen is an easy method to overcome gagging. Aim The objective of this paper is to carry out a ten-year retrospective case series on the application of oxygen on gagging patients diagnosed with sleep disordered breathing (SDB). Materials and methods A cohort of 62 private dental patient data was collected for the study over the course of ten years (2007–2017). Patient information used included medical history, vital signs (blood pressure, height, and weight), neck circumference, BMI measurements, lateral cephalometric radiograph, capnograph and a full clinical examination. Results and discussion Patients with SDB and gagging issues have associated clinical findings such as scalloped tongue, mandibular and maxillary tori, skeletal class 2 division 1, narrow arch, deep palatal vault and worn-down dentition. Only one patient out of 62 gagging patients did not respond to oxygen therapy. This patient was identified as having SDB with a psychological component. Conclusion Oxygen is an excellent method to overcome gagging issues in dental patients with history of SDB
    corecore