341 research outputs found

    Multi-heme Cytochromes in Shewanella oneidensis MR-1:Structures, functions and opportunities

    Get PDF
    Multi-heme cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometers. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-heme cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-heme cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward there are opportunities to engage multi-heme cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-heme cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-heme cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies

    Non-perturbative computation of double inclusive gluon production in the Glasma

    Full text link
    The near-side ridge observed in A+A collisions at RHIC has been described as arising from the radial flow of Glasma flux tubes formed at very early times in the collisions. We investigate the viability of this scenario by performing a non-perturbative numerical computation of double inclusive gluon production in the Glasma. Our results support the conjecture that the range of transverse color screening of correlations determining the size of the flux tubes is a semi-hard scale, albeit with non-trivial structure. We discuss our results in the context of ridge correlations in the RHIC heavy ion experiments.Comment: 25 pages, 11 figures, uses JHEP3.cls V2: small clarifications, published in JHE

    JIMWLK evolution in the Gaussian approximation

    Get PDF
    We demonstrate that the Balitsky-JIMWLK equations describing the high-energy evolution of the n-point functions of the Wilson lines (the QCD scattering amplitudes in the eikonal approximation) admit a controlled mean field approximation of the Gaussian type, for any value of the number of colors Nc. This approximation is strictly correct in the weak scattering regime at relatively large transverse momenta, where it reproduces the BFKL dynamics, and in the strong scattering regime deeply at saturation, where it properly describes the evolution of the scattering amplitudes towards the respective black disk limits. The approximation scheme is fully specified by giving the 2-point function (the S-matrix for a color dipole), which in turn can be related to the solution to the Balitsky-Kovchegov equation, including at finite Nc. Any higher n-point function with n greater than or equal to 4 can be computed in terms of the dipole S-matrix by solving a closed system of evolution equations (a simplified version of the respective Balitsky-JIMWLK equations) which are local in the transverse coordinates. For simple configurations of the projectile in the transverse plane, our new results for the 4-point and the 6-point functions coincide with the high-energy extrapolations of the respective results in the McLerran-Venugopalan model. One cornerstone of our construction is a symmetry property of the JIMWLK evolution, that we notice here for the first time: the fact that, with increasing energy, a hadron is expanding its longitudinal support symmetrically around the light-cone. This corresponds to invariance under time reversal for the scattering amplitudes.Comment: v2: 45 pages, 4 figures, various corrections, section 4.4 updated, to appear in JHE

    B cells do not take up bacterial DNA: An essential role for antigen in exposure of DNA to toll-like receptor-9

    Get PDF
    Murine dendritic cells (DC) and macrophages respond to bacterial CpG DNA through toll-like receptor 9 (TLR9). Although it is frequently assumed that bacterial DNA is a direct stimulus for B cells, published work does not reliably show responses of purified B cells. Here we show that purified splenic B cells did not respond to Escherichia coli DNA with induction of CD86, despite readily responding to single-stranded (ss) phosphodiester CpG oligodeoxynucleotides (ODN). This was due to a combination of weak responses to both long and double-stranded (ds) DNA. B-cell DNA uptake was greatly reduced with increasing DNA length. This contrasts with macrophages where DNA uptake and subsequent responses were enhanced with increasing DNA length. However, when DNA was physically linked to hen egg lysozyme (HEL), HEL-specific B cells showed efficient uptake of DNA, and limited proliferation in response to the HEL-DNA complex. We propose that, in the absence of other signals, B cells have poor uptake and responses to long dsDNA to prevent polyclonal activation. Conversely, when DNA is physically linked to a B-cell receptor (BCR) ligand, its uptake is increased, allowing TLR9-dependent B-cell activation in an antigen-specific manner. We could not generate fragments of E. coli DNA by limited DNaseI digestion that could mimic the stimulatory effect of ss CpG ODN on naive B cells. We suggest that the frequently studied polyclonal B-cell responses to CpG ODN are relevant to therapeutic applications of phosphorothioate-modified CpG-containing ODN, but not to natural responses to foreign or host dsDNA. Immunology and Cell Biology (2011) 89, 517-525; doi:10.1038/icb.2010.112; published online 5 October 201

    Histone Acetylation-Mediated Regulation of the Hippo Pathway

    Get PDF
    The Hippo pathway is a signaling cascade recently found to play a key role in tumorigenesis therefore understanding the mechanisms that regulate it should open new opportunities for cancer treatment. Available data indicate that this pathway is controlled by signals from cell-cell junctions however the potential role of nuclear regulation has not yet been described. Here we set out to verify this possibility and define putative mechanism(s) by which it might occur. By using a luciferase reporter of the Hippo pathway, we measured the effects of different nuclear targeting drugs and found that chromatin-modifying agents, and to a lesser extent certain DNA damaging drugs, strongly induced activity of the reporter. This effect was not mediated by upstream core components (i.e. Mst, Lats) of the Hippo pathway, but through enhanced levels of the Hippo transducer TAZ. Investigation of the underlying mechanism led to the finding that cancer cell exposure to histone deacetylase inhibitors induced secretion of growth factors and cytokines, which in turn activate Akt and inhibit the GSK3 beta associated protein degradation complex in drug-affected as well as in their neighboring cells. Consequently, expression of EMT genes, cell migration and resistance to therapy were induced. These processes were suppressed by using pyrvinium, a recently described small molecule activator of the GSK 3 beta associated degradation complex. Overall, these findings shed light on a previously unrecognized phenomenon by which certain anti-cancer agents may paradoxically promote tumor progression by facilitating stabilization of the Hippo transducer TAZ and inducing cancer cell migration and resistance to therapy. Pharmacological targeting of the GSK3 beta associated degradation complex may thus represent a unique approach to treat cancer. © 2013 Basu et al

    What are the main inefficiencies in trial conduct : a survey of UKCRC registered clinical trials units in the UK

    Get PDF
    BACKGROUND: The UK Clinical Research Collaboration (UKCRC) registered Clinical Trials Units (CTUs) Network aims to support high-quality, efficient and sustainable clinical trials research in the UK. To better understand the challenges in efficient trial conduct, and to help prioritise tackling these challenges, we surveyed CTU staff. The aim was to identify important inefficiencies during two key stages of the trial conduct life cycle: (i) from grant award to first participant, (ii) from first participant to reporting of final results. METHODS: Respondents were asked to list their top three inefficiencies from grant award to recruitment of the first participant, and from recruitment of the first participant to publication of results. Free text space allowed respondents to explain why they thought these were important. The survey was constructed using SurveyMonkey and circulated to the 45 registered CTUs in May 2013. Respondents were asked to name their unit and job title, but were otherwise anonymous. Free-text responses were coded into broad categories. RESULTS: There were 43 respondents from 25 CTUs. The top inefficiency between grant award and recruitment of first participant was reported as obtaining research and development (R&D) approvals by 23 respondents (53%), contracts by 22 (51%), and other approvals by 13 (30%). The top inefficiency from recruitment of first participant to publication of results was failure to meet recruitment targets, reported by 19 (44%) respondents. A common comment was that this reflected overoptimistic or inaccurate estimates of recruitment at site. Data management, including case report form design and delays in resolving data queries with sites, was reported as an important inefficiency by 11 (26%) respondents, and preparation and submission for publication by 9 (21%). CONCLUSIONS: Recommendations for improving the efficiency of trial conduct within the CTUs network include: further reducing unnecessary bureaucracy in approvals and contracting; improving training for site staff; realistic recruitment targets and appropriate feasibility; developing training across the network; improving the working relationships between chief investigators and units; encouraging funders to release sufficient funding to allow prompt recruitment of trial staff; and encouraging more research into how to improve the efficiency and quality of trial conduct

    Search for Charged Higgs Bosons in e+e- Collisions at \sqrt{s} = 189 GeV

    Full text link
    A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at a centre-of-mass energy of 188.6 GeV, corresponding to an integrated luminosity of 176.4 pb^-1. Higgs decays into a charm and a strange quark or into a tau lepton and its associated neutrino are considered. The observed events are consistent with the expectations from Standard Model background processes. A lower limit of 65.5 GeV on the charged Higgs mass is derived at 95 % confidence level, independent of the decay branching ratio Br(H^{+/-} -> tau nu)

    Abnormal social reward processing in autism as indexed by pupillary responses to happy faces

    Get PDF
    Background: Individuals with Autism Spectrum Disorders (ASD) typically show impaired eye contact during social interactions. From a young age, they look less at faces than typically developing (TD) children and tend to avoid direct gaze. However, the reason for this behavior remains controversial; ASD children might avoid eye contact because they perceive the eyes as aversive or because they do not find social engagement through mutual gaze rewarding. Methods: We monitored pupillary diameter as a measure of autonomic response in children with ASD (n = 20, mean age = 12.4) and TD controls (n = 18, mean age = 13.7) while they looked at faces displaying different emotions. Each face displayed happy, fearful, angry or neutral emotions with the gaze either directed to or averted from the subjects. Results: Overall, children with ASD and TD controls showed similar pupillary responses; however, they differed significantly in their sensitivity to gaze direction for happy faces. Specifically, pupillary diameter increased among TD children when viewing happy faces with direct gaze as compared to those with averted gaze, whereas children with ASD did not show such sensitivity to gaze direction. We found no group differences in fixation that could explain the differential pupillary responses. There was no effect of gaze direction on pupil diameter for negative affect or neutral faces among either the TD or ASD group. Conclusions: We interpret the increased pupillary diameter to happy faces with direct gaze in TD children to reflect the intrinsic reward value of a smiling face looking directly at an individual. The lack of this effect in children with ASD is consistent with the hypothesis that individuals with ASD may have reduced sensitivity to the reward value of social stimuli
    • …
    corecore