57 research outputs found

    Observation of a pairing pseudogap in a two-dimensional Fermi gas

    Full text link
    Pairing of fermions is ubiquitous in nature and it is responsible for a large variety of fascinating phenomena like superconductivity, superfluidity of 3^3He, the anomalous rotation of neutron stars, and the BEC-BCS crossover in strongly interacting Fermi gases. When confined to two dimensions, interacting many-body systems bear even more subtle effects, many of which lack understanding at a fundamental level. Most striking is the, yet unexplained, effect of high-temperature superconductivity in cuprates, which is intimately related to the two-dimensional geometry of the crystal structure. In particular, the questions how many-body pairing is established at high temperature and whether it precedes superconductivity are crucial to be answered. Here, we report on the observation of pairing in a harmonically trapped two-dimensional atomic Fermi gas in the regime of strong coupling. We perform momentum-resolved photoemission spectroscopy, analogous to ARPES in the solid state, to measure the spectral function of the gas and we detect a many-body pairing gap above the superfluid transition temperature. Our observations mark a significant step in the emulation of layered two-dimensional strongly correlated superconductors using ultracold atomic gases

    Universal Spin Transport in a Strongly Interacting Fermi Gas

    Get PDF
    Transport of fermions is central in many elds of physics. Electron transport runs modern technology, de ning states of matter such as superconductors and insulators, and electron spin, rather than charge, is being explored as a new carrier of information [1]. Neutrino transport energizes supernova explosions following the collapse of a dying star [2], and hydrodynamic transport of the quark-gluon plasma governed the expansion of the early Universe [3]. However, our understanding of non-equilibrium dynamics in such strongly interacting fermionic matter is still limited. Ultracold gases of fermionic atoms realize a pristine model for such systems and can be studied in real time with the precision of atomic physics [4, 5]. It has been established that even above the super uid transition such gases ow as an almost perfect uid with very low viscosity [3, 6] when interactions are tuned to a scattering resonance. However, here we show that spin currents, as opposed to mass currents, are maximally damped, and that interactions can be strong enough to reverse spin currents, with opposite spin components reflecting off each other. We determine the spin drag coefficient, the spin di usivity, and the spin susceptibility, as a function of temperature on resonance and show that they obey universal laws at high temperatures. At low temperatures, the spin di usivity approaches a minimum value set by ħ/m, the quantum limit of di usion, where ħ is the reduced Planck's constant and m the atomic mass. For repulsive interactions, our measurements appear to exclude a metastable ferromagnetic state [7{9].National Science Foundation (U.S.)United States. Office of Naval ResearchUnited States. Army Research Office (DARPA OLE programme)Alfred P. Sloan FoundationUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research InitiativeUnited States. Army Research Office. Multidisciplinary University Research InitiativeUnited States. Defense Advanced Research Projects Agency. Young Faculty AwardDavid & Lucile Packard Foundatio
    • …
    corecore