1,060 research outputs found
Projections of climate-driven changes in tuna vertical habitat based on species-specific differences in blood oxygen affinity
Oxygen concentrations are hypothesized to decrease in many areas of the ocean as a result of anthropogenically driven climate change, resulting in habitat compression for pelagic animals. The oxygen partial pressure, pO(2), at which blood is 50% saturated (P-50) is a measure of blood oxygen affinity and a gauge of the tolerance of animals for low ambient oxygen. Tuna species display a wide range of blood oxygen affinities (i.e., P-50 values) and therefore may be differentially impacted by habitat compression as they make extensive vertical movements to forage on subdaily time scales. To project the effects of end-of-the-century climate change on tuna habitat, we calculate tuna P-50 depths (i.e., the vertical position in the water column at which ambient pO(2) is equal to species-specific blood P-50 values) from 21st century Earth System Model (ESM) projections included in the fifth phase of the Climate Model Intercomparison Project (CMIP5). Overall, we project P-50 depths to shoal, indicating likely habitat compression for tuna species due to climate change. Tunas that will be most impacted by shoaling are Pacific and southern bluefin tunas-habitat compression is projected for the entire geographic range of Pacific bluefin tuna and for the spawning region of southern bluefin tuna. Vertical shifts in P-50 depths will potentially influence resource partitioning among Pacific bluefin, bigeye, yellowfin, and skipjack tunas in the northern subtropical and eastern tropical Pacific Ocean, the Arabian Sea, and the Bay of Bengal. By establishing linkages between tuna physiology and environmental conditions, we provide a mechanistic basis to project the effects of anthropogenic climate change on tuna habitats
Standardising RNA profiling based biomarker application in cancer - the need for robust control of technical variables
Histopathology-based staging of colorectal cancer (CRC) has utility in assessing the prognosis of patient subtypes, but as yet cannot accurately predict individual patientâs treatment response. Transcriptomics approaches, using array based or next generation sequencing (NGS) platforms, of formalin fixed paraffin embedded tissue can be harnessed to develop multi-gene biomarkers for predicting both prognosis and treatment response, leading to stratification of treatment. While transcriptomics can shape future biomarker development, currently < 1% of published biomarkers become clinically validated tests, often due to poor study design or lack of independent validation. In this review of a large number of CRC transcriptional studies, we identify recurrent sources of technical variability that encompass collection, preservation and storage of malignant tissue, nucleic acid extraction, methods to quantitate RNA transcripts and data analysis pipelines. We propose a series of defined steps for removal of these confounding issues, to ultimately aid in the development of more robust clinical biomarkers
Axion-like-particle search with high-intensity lasers
We study ALP-photon-conversion within strong inhomogeneous electromagnetic
fields as provided by contemporary high-intensity laser systems. We observe
that probe photons traversing the focal spot of a superposition of Gaussian
beams of a single high-intensity laser at fundamental and frequency-doubled
mode can experience a frequency shift due to their intermittent propagation as
axion-like-particles. This process is strongly peaked for resonant masses on
the order of the involved laser frequencies. Purely laser-based experiments in
optical setups are sensitive to ALPs in the mass range and can
thus complement ALP searches at dipole magnets.Comment: 25 pages, 2 figure
Epidemics on contact networks: a general stochastic approach
Dynamics on networks is considered from the perspective of Markov stochastic
processes. We partially describe the state of the system through network motifs
and infer any missing data using the available information. This versatile
approach is especially well adapted for modelling spreading processes and/or
population dynamics. In particular, the generality of our systematic framework
and the fact that its assumptions are explicitly stated suggests that it could
be used as a common ground for comparing existing epidemics models too complex
for direct comparison, such as agent-based computer simulations. We provide
many examples for the special cases of susceptible-infectious-susceptible (SIS)
and susceptible-infectious-removed (SIR) dynamics (e.g., epidemics propagation)
and we observe multiple situations where accurate results may be obtained at
low computational cost. Our perspective reveals a subtle balance between the
complex requirements of a realistic model and its basic assumptions.Comment: Main document: 16 pages, 7 figures. Electronic Supplementary Material
(included): 6 pages, 1 tabl
Performance Nutrition in the Digital Era â An exploratory study into the use of Social Media by Sports Nutritionists
This study aimed to explore how social media is being used by sports nutritionists as part of service provision, as well as practitionersâ experiences and opinions of its use in practice. An exploratory sequential mixed methods approach was used during this research. Forty-four sports nutritionists completed an online survey detailing their personal and professional social media use. Semi-structured follow-up interviews were conducted with 16 participants who volunteered to do so. Survey responses were collated and reported as descriptive statistics. Interviews were thematically analysed.
Social media was used by 89% of sports nutritionists to support practice, of which 97% perceived its use to be beneficial. Platforms were used to deliver information and resources, and support athletes online via pages, groups and 1-2-1 messaging. Social media facilitated improved communication between the practitioner and the athlete, as well as facilitating mobile and visual learning. Lack of digital intervention training and time were reported as challenges to social media use in practice.
Sports nutritionists have embraced social media as an extension of service provision. Professional education should now consider supporting nutritionistsâ in developing digital professionalism
Inconsistent strategies to spin up models in CMIP5: Implications for ocean biogeochemical model performance assessment
This is the final version of the article. Available from EGU via the DOI in this record.During the fifth phase of the Coupled Model Intercomparison Project (CMIP5) substantial efforts were made to systematically assess the skill of Earth system models. One goal was to check how realistically representative marine biogeochemical tracer distributions could be reproduced by models. In routine assessments model historical hindcasts were compared with available modern biogeochemical observations. However, these assessments considered neither how close modeled biogeochemical reservoirs were to equilibrium nor the sensitivity of model performance to initial conditions or to the spin-up protocols. Here, we explore how the large diversity in spin-up protocols used for marine biogeochemistry in CMIP5 Earth system models (ESMs) contributes to model-to-model differences in the simulated fields. We take advantage of a 500-year spin-up simulation of IPSL-CM5A-LR to quantify the influence of the spin-up protocol on model ability to reproduce relevant data fields. Amplification of biases in selected biogeochemical fields (O2, NO3, Alk-DIC) is assessed as a function of spin-up duration. We demonstrate that a relationship between spin-up duration and assessment metrics emerges from our model results and holds when confronted with a larger ensemble of CMIP5 models. This shows that drift has implications for performance assessment in addition to possibly aliasing estimates of climate change impact. Our study suggests that differences in spin-up protocols could explain a substantial part of model disparities, constituting a source of model-to-model uncertainty. This requires more attention in future model intercomparison exercises in order to provide quantitatively more correct ESM results on marine biogeochemistry and carbon cycle feedbacks.We sincerely thank I. Kriest, F. Joos, the
anonymous reviewer and A. Yool for their useful comments on this
paper. This work was supported by H2020 project CRESCENDO
âCoordinated Research in Earth Systems and Climate: Experiments,
kNowledge, Dissemination and Outreachâ, which received
funding from the European Unionâs Horizon 2020 research and
innovation programme under grant agreement no. 641816 and by
the EU FP7 project CARBOCHANGE âChanges in carbon uptake
and emissions by oceans in a changing climateâ which received
funding from the European communityâs Seventh Framework Programme
under grant agreement no. 264879. Supercomputing time
was provided by GENCI (Grand Equipement National de Calcul
Intensif) at CCRT (Centre de Calcul Recherche et Technologie),
allocation 016178. Finally, we are grateful to the ESGF project
which makes data available for all the community. Roland Séférian
is grateful to Aurélien Ribes for his kind advices on statistics.
Jerry Tjiputra acknowledges ORGANIC project (239965/F20)
funded by the Research Council of Norway. Christoph Heinze
and Jerry Tjiputra are grateful for support through project EVA â
Earth system modelling of climate variations in the Anthropocene
(229771/E10) funded by the Research Council of Norway, as well
as CPU-time and mass storage provided through NOTUR project
NN2345K as well as NorStore project NS2345K. Keith Lindsay
and Scott C. Doney acknowledge support from the National
Science Foundation
Robustness Through Regime Flips in Collapsing Ecological Networks
© 2019, Crown. There has been considerable progress in our perception of organized complexity in recent years. Recurrent debates on the dynamics and stability of complex systems have provided several insights, but it is very difficult to find identifiable patterns in the relationship between complex network structure and dynamics. Traditionally an arena for theoreticians, much of this research has been invigorated by demonstration of alternate stable states in real world ecosystems such as lakes, coral reefs, forests and grasslands. In this work, we use topological connectivity attributes of eighty six ecological networks and link these with random and targeted perturbations, to obtain general patterns of behaviour of complex real world systems. We have analyzed the response of each ecological network to individual, grouped and cascading extinctions, and the results suggest that most networks are robust to loss of specialists until specific thresholds are reached in terms of network geodesics. If the extinctions persist beyond these thresholds, a state change or âflipâ occurs and the structural properties are altered drastically, although the network does not collapse. As opposed to simpler or smaller networks, we find larger networks to contain multiple states that may in turn, ensure long-term persistence, suggesting that complexity can endow resilience to ecosystems. The concept of critical transitions in ecological networks and the implications of these findings for complex systems characterized by networks are likely to be profound with immediate significance for ecosystem conservation, invasion biology and restoration ecology.Non
Predicting the Impact of Climate Change on Threatened Species in UK Waters
Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina)
- âŠ