2,009 research outputs found
Unit Roots and Cointegration in Panels
This paper provides a review of the literature on unit roots and cointegration in panels where the time dimension (T), and the cross section dimension (N) are relatively large. It distinguishes between the first generation tests developed on the assumption of the cross section independence, and the second generation tests that allow, in a variety of forms and degrees, the dependence that might prevail across the different units in the panel. In the analysis of cointegration the hypothesis testing and estimation problems are further complicated by the possibility of cross section cointegration which could arise if the unit roots in the different cross section units are due to common random walk components
Comment on Zwally and others (2015)-mass gains of the Antarctic ice sheet exceed losses
In their article ‘Mass gains of the Antarctic ice sheet exceed losses’ Zwally and others (2015) choose Vostok Subglacial Lake as an exemplary region to demonstrate their inference of surface height change rates from a portion of the ICESat mission’s laser altimetry data (2003–08). In their appendix, they discuss some of the remarkable differences between their results and those reported by Richter and others (2008, 2013, 2014). However, the selective consideration of our works and the misleading or incorrect interpretation of our results call for clarificationFil: Richter, Andreas Jorg. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Technische Universitaet Dresden; AlemaniaFil: Horwath, M.. Technische Universitaet Dresden; AlemaniaFil: Dietrich, R.. Technische Universitaet Dresden; Alemani
Nilpotent Approximations of Sub-Riemannian Distances for Fast Perceptual Grouping of Blood Vessels in 2D and 3D
We propose an efficient approach for the grouping of local orientations
(points on vessels) via nilpotent approximations of sub-Riemannian distances in
the 2D and 3D roto-translation groups and . In our distance
approximations we consider homogeneous norms on nilpotent groups that locally
approximate , and which are obtained via the exponential and logarithmic
map on . In a qualitative validation we show that the norms provide
accurate approximations of the true sub-Riemannian distances, and we discuss
their relations to the fundamental solution of the sub-Laplacian on .
The quantitative experiments further confirm the accuracy of the
approximations. Quantitative results are obtained by evaluating perceptual
grouping performance of retinal blood vessels in 2D images and curves in
challenging 3D synthetic volumes. The results show that 1) sub-Riemannian
geometry is essential in achieving top performance and 2) that grouping via the
fast analytic approximations performs almost equally, or better, than
data-adaptive fast marching approaches on and .Comment: 18 pages, 9 figures, 3 tables, in review at JMI
Short-term effects of CO₂-induced low pH exposure on target gene expression in Platynereis dumerilii
Objective: Increasing atmospheric CO₂ concentration are causing changes to the seawater carbonate chemistry, lowering the pH and we study potential impacts of these changes at the molecular level in a non-calcifying, marine polychaete species Platynereis dumerilii. Methods: we investigate the relative expression of carbonic anhydrase (CA), Na+/H+ exchangers (NHE), and calmodulin (CaM) genes from P. dumerilii under acidified seawater conditions (pH 7.8) induced by CO₂ using qPCR. Results: mRNA expression of CA in the CO₂-induced worms was significantly up-regulated at low pH conditions (pH 7.8, 1h), suggesting changes in acid-base balance. In contrast, the expression of NHE and CaM showed no significant change. In addition, we compare these results to a previous study using inorganic acid (HCl)-induced pH changes. Conclusions: results suggest that carbonate chemistry has an impact on gene expression that differs from pH-associated change. To our knowledge, this is the first study that compares low pH exposure experiments using HCl and CO₂ as the inducing agents
Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth model
Thirty‒one GPS geodetic measurements of crustal uplift in southernmost South America determined extraordinarily high trend rates (> 35 mm/yr) in the north‒central part of the Southern Patagonian Icefield. These trends have a coherent pattern, motivating a refined viscoelastic glacial isostatic adjustment model to explain the observations. Two end‒member models provide good fits: both require a lithospheric thickness of 36.5 ± 5.3 km. However, one end‒member has a mantle viscosity near η =1.6 ×1018 Pa s and an ice collapse rate from the Little Ice Age (LIA) maximum comparable to a lowest recent estimate of 1995–2012 ice loss at about −11 Gt/yr. In contrast, the other end‒member has much larger viscosity: η = 8.0 ×1018 Pa s, half the post–LIA collapse rate, and a steadily rising loss rate in the twentieth century after AD 1943, reaching −25.9 Gt/yr during 1995–2012.Fil: Lange, H.. Technische Universitaet Dresden; AlemaniaFil: Casassa, G.. Centro de Estudios Cientificos; Chile. Universidad de Magallanes; ChileFil: Ivins, E. R.. Institute of Technology. Jet propulsion Laboratory; Estados UnidosFil: Schroeder, L.. Technische Universitaet Dresden; AlemaniaFil: Fritsche, M.. Technische Universitaet Dresden; AlemaniaFil: Richter, Andreas Jorg. Technische Universitaet Dresden; Alemania. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Astrometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Groh, A.. Technische Universitaet Dresden; AlemaniaFil: Dietrich, R.. Technische Universitaet Dresden; Alemani
Airborne Measurements of Gravity Wave Breaking at the Tropopause
2000 FLORIDA AVE NW, WASHINGTON, DC,
2000
Towards commercial products by nanocasting : characterization and lithium insertion properties of carbons with a macroporous, interconnected pore structure
Carbon materials with defined porosity are prepared using the nanocasting approach. The structural properties of the prepared carbon materials are examined by SEM, XRD, XPS, elemental analysis, nitrogen physisorption and Hg porosimetry. The materials exhibit an interconnected porous network with spherical pores in the macropore range, being a replica of spherical SiO2 particles. The average macropore size (300-700 nm) and surface area (35-470 m2 g-1) can be tailored by the choice of template and carbon precursor. More importantly, based on silica templates prepared by flame pyrolysis, the whole process, including HF etching of the template, can be easily industrialized. Lithium storage measurements are used to demonstrate the beneficial transport properties of the porous carbon materials which are referenced against non-porous carbons. The porous carbon materials exhibit high capacity (550 mA h g-1 at C/5) and excellent rate capability (90 mA h g-1 at 60C). Surprisingly, the excellent lithium storage properties are related to the macroporous framework rather than high surface area and/or micro- and mesoporosity
- …
