9,629 research outputs found
Assumptions that imply quantum dynamics is linear
A basic linearity of quantum dynamics, that density matrices are mapped
linearly to density matrices, is proved very simply for a system that does not
interact with anything else. It is assumed that at each time the physical
quantities and states are described by the usual linear structures of quantum
mechanics. Beyond that, the proof assumes only that the dynamics does not
depend on anything outside the system but must allow the system to be described
as part of a larger system. The basic linearity is linked with previously
established results to complete a simple derivation of the linear Schrodinger
equation. For this it is assumed that density matrices are mapped one-to-one
onto density matrices. An alternative is to assume that pure states are mapped
one-to-one onto pure states and that entropy does not decrease.Comment: 10 pages. Added references. Improved discussion of equations of
motion for mean values. Expanded Introductio
Slope Instability of the Earthen Levee in Boston, UK: Numerical Simulation and Sensor Data Analysis
The paper presents a slope stability analysis for a heterogeneous earthen
levee in Boston, UK, which is prone to occasional slope failures under tidal
loads. Dynamic behavior of the levee under tidal fluctuations was simulated
using a finite element model of variably saturated linear elastic perfectly
plastic soil. Hydraulic conductivities of the soil strata have been calibrated
according to piezometers readings, in order to obtain correct range of
hydraulic loads in tidal mode. Finite element simulation was complemented with
series of limit equilibrium analyses. Stability analyses have shown that slope
failure occurs with the development of a circular slip surface located in the
soft clay layer. Both models (FEM and LEM) confirm that the least stable
hydraulic condition is the combination of the minimum river levels at low tide
with the maximal saturation of soil layers. FEM results indicate that in winter
time the levee is almost at its limit state, at the margin of safety (strength
reduction factor values are 1.03 and 1.04 for the low-tide and high-tide
phases, respectively); these results agree with real-life observations. The
stability analyses have been implemented as real-time components integrated
into the UrbanFlood early warning system for flood protection
Revisiting two-step Forbush decreases
Interplanetary coronal mass ejections (ICMEs) and their shocks can sweep out galactic cosmic rays (GCRs), thus creating Forbush decreases (FDs). The traditional model of FDs predicts that an ICME and its shock decrease the GCR intensity in a two-step profile. This model, however, has been the focus of little testing. Thus, our goal is to discover whether a passing ICME and its shock inevitably lead to a two-step FD, as predicted by the model. We use cosmic ray data from 14 neutron monitors and, when possible, high time resolution GCR data from the spacecraft International Gamma Ray Astrophysical Laboratory (INTEGRAL). We analyze 233 ICMEs that should have created two-step FDs. Of these, only 80 created FDs, and only 13 created two-step FDs. FDs are thus less common than predicted by the model. The majority of events indicates that profiles of FDs are more complicated, particularly within the ICME sheath, than predicted by the model. We conclude that the traditional model of FDs as having one or two steps should be discarded. We also conclude that generally ignored small-scale interplanetary magnetic field structure can contribute to the observed variety of FD profiles
Multipoint, high time resolution galactic cosmic ray observations associated with two interplanetary coronal mass ejections
[1] Galactic cosmic rays (GCRs) play an important role in our understanding of the interplanetary medium (IPM). The causes of their short timescale variations, however, remain largely unexplored. In this paper, we compare high time resolution, multipoint space-based GCR data to explore structures in the IPM that cause these variations. To ensure that features we see in these data actually relate to conditions in the IPM, we look for correlations between the GCR time series from two instruments onboard the Polar and INTEGRAL (International Gamma Ray Astrophysical Laboratory) satellites, respectively inside and outside Earth\u27s magnetosphere. We analyze the period of 18–24 August 2006 during which two interplanetary coronal mass ejections (ICMEs) passed Earth and produced a Forbush decrease (Fd) in the GCR flux. We find two periods, for a total of 10 h, of clear correlation between small-scale variations in the two GCR time series during these 7 days, thus demonstrating that such variations are observable using space-based instruments. The first period of correlation lasted 6 h and began 2 h before the shock of the first ICME passed the two spacecraft. The second period occurred during the initial decrease of the Fd, an event that did not conform to the typical one- or two-step classification of Fds. We propose that two planar magnetic structures preceding the first ICME played a role in both periods: one structure in driving the first correlation and the other in initiating the Fd
Black holes admitting a Freudenthal dual
The quantised charges x of four dimensional stringy black holes may be
assigned to elements of an integral Freudenthal triple system whose
automorphism group is the corresponding U-duality and whose U-invariant quartic
norm Delta(x) determines the lowest order entropy. Here we introduce a
Freudenthal duality x -> \tilde{x}, for which \tilde{\tilde{x}}=-x. Although
distinct from U-duality it nevertheless leaves Delta(x) invariant. However, the
requirement that \tilde{x} be integer restricts us to the subset of black holes
for which Delta(x) is necessarily a perfect square. The issue of higher-order
corrections remains open as some, but not all, of the discrete U-duality
invariants are Freudenthal invariant. Similarly, the quantised charges A of
five dimensional black holes and strings may be assigned to elements of an
integral Jordan algebra, whose cubic norm N(A) determines the lowest order
entropy. We introduce an analogous Jordan dual A*, with N(A) necessarily a
perfect cube, for which A**=A and which leaves N(A) invariant. The two
dualities are related by a 4D/5D lift.Comment: 32 pages revtex, 10 tables; minor corrections, references adde
Chaos and Correspondence in Classical and Quantum Hamiltonian Ratchets: A Heisenberg Approach
Previous work [Gong and Brumer, Phys. Rev. Lett., 97, 240602 (2006)]
motivates this study as to how asymmetry-driven quantum ratchet effects can
persist despite a corresponding fully chaotic classical phase space. A simple
perspective of ratchet dynamics, based on the Heisenberg picture, is
introduced. We show that ratchet effects are in principle of common origin in
classical and quantum mechanics, though full chaos suppresses these effects in
the former but not necessarily the latter. The relationship between ratchet
effects and coherent dynamical control is noted.Comment: 21 pages, 7 figures, to appear in Phys. Rev.
Vertex Operators in 2K Dimensions
A formula is proposed which expresses free fermion fields in 2K dimensions in
terms of the Cartan currents of the free fermion current algebra. This leads,
in an obvious manner, to a vertex operator construction of nonabelian free
fermion current algebras in arbitrary even dimension. It is conjectured that
these ideas may generalize to a wide class of conformal field theories.Comment: Minor change in notation. Change in references
Lorentz-breaking effects in scalar-tensor theories of gravity
In this work, we study the effects of breaking Lorentz symmetry in
scalar-tensor theories of gravity taking torsion into account. We show that a
space-time with torsion interacting with a Maxwell field by means of a
Chern-Simons-like term is able to explain the optical activity in syncrotron
radiation emitted by cosmological distant radio sources. Without specifying the
source of the dilaton-gravity, we study the dilaton-solution. We analyse the
physical implications of this result in the Jordan-Fierz frame. We also analyse
the effects of the Lorentz breaking in the cosmic string formation process. We
obtain the solution corresponding to a cosmic string in the presence of torsion
by keeping track of the effects of the Chern-Simons coupling and calculate the
charge induced on this cosmic string in this framework. We also show that the
resulting charged cosmic string gives us important effects concerning the
background radiation.The optical activity in this case is also worked out and
discussed.Comment: 10 pages, no figures, ReVTex forma
Order to disorder transition in the XY-like quantum magnet Cs2CoCl4 induced by noncommuting applied fields
We explore the effects of noncommuting applied fields on the ground-state
ordering of the quasi-one-dimensional spin-1/2 XY-like antiferromagnet Cs2CoCl4
using single-crystal neutron diffraction. In zero field interchain couplings
cause long-range order below T_N=217(5) mK with chains ordered
antiferromagnetically along their length and moments confined to the (b,c)
plane. Magnetic fields applied at an angle to the XY planes are found to
initially stabilize the order by promoting a spin-flop phase with an increased
perpendicular antiferromagnetic moment. In higher fields the antiferromagnetic
order becomes unstable and a transition occurs to a phase with no long-range
order in the (b,c) plane, proposed to be a spin liquid phase that arises when
the quantum fluctuations induced by the noncommuting field become strong enough
to overcome ordering tendencies. Magnetization measurements confirm that
saturation occurs at much higher fields and that the proposed spin-liquid state
exists in the region 2.10 < H_SL < 2.52 T || a. The observed phase diagram is
discussed in terms of known results on XY-like chains in coexisting
longitudinal and transverse fields.Comment: revtex, 14 figures, 2 tables, to appear in Phys. Rev.
Gravitational red-shift and deflection of slow light
We explore the nature of the classical propagation of light through media
with strong frequency-dependent dispersion in the presence of a gravitational
field. In the weak field limit, gravity causes a redshift of the optical
frequency, which the slow-light medium converts into a spatially-varying index
of refraction. This results in the bending of a light ray in the medium. We
further propose experimental techniques to amplify and detect the phenomenon
using weak value measurements. Independent heuristic and rigorous derivations
of this effect are given.Comment: 9 pages, 1 figur
- …