142,128 research outputs found
Near-field angular distributions of high velocity ions for low-power hall thrusters
Experimental angular distributions of high-energy primary ions in the near-field region of a small Hall thruster between 50-200 mm downstream of the thruster exit plane at a range of centerline angles have been determined using a highly-collimated, energy-selective diagnostic probe. The measurements reveal a wide angular distribution of ions exiting the thruster channel and the formation of a strong, axially-directed jet of ions along the thruster centerline. Comparisons are made to other experimental determinations as applicable
Speaker-normalized sound representations in the human auditory cortex
The acoustic dimensions that distinguish speech sounds (like the vowel differences in “boot” and “boat”) also differentiate speakers’ voices. Therefore, listeners must normalize across speakers without losing linguistic information. Past behavioral work suggests an important role for auditory contrast enhancement in normalization: preceding context affects listeners’ perception of subsequent speech sounds. Here, using intracranial electrocorticography in humans, we investigate whether and how such context effects arise in auditory cortex. Participants identified speech sounds that were preceded by phrases from two different speakers whose voices differed along the same acoustic dimension as target words (the lowest resonance of the vocal tract). In every participant, target vowels evoke a speaker-dependent neural response that is consistent with the listener’s perception, and which follows from a contrast enhancement model. Auditory cortex processing thus displays a critical feature of normalization, allowing listeners to extract meaningful content from the voices of diverse speakers
Reliability evaluation of hermetic dual in-line flat microcircuit packages
The relative strengths and weaknesses of 35 commonly used hermetic flat and dual in-line packages were determined and used to rank each of the packages according to a numerical weighting scheme for package attributes. The list of attributes included desirable features in five major areas: lead and lead seal, body construction, body materials, lid and lid seal, and marking. The metal flat pack and multilayer integral ceramic flat pack and DIP received the highest rankings, and the soft glass Cerdip and Cerpak types received the lowest rankings. Loss of package hermeticity due to lead and lid seal problems was found to be the predominant failure mode from the literature/data search. However, environmental test results showed that lead and lid seal failures due to thermal stressing was only a problem with the hard glass (Ceramic) body DIP utilizing a metal lid and/or bottom. Insufficient failure data were generated for the other package types tested to correlate test results with the package ranking
Solar powered hybrid sensor module program
Geo-orbital systems of the near future will require more sophisticated electronic and electromechanical monitoring and control systems than current satellite systems with an emphasis in the design on the electronic density and autonomy of the subsystem components. Results of a project to develop, design, and implement a proof-of-concept sensor system for space applications, with hybrids forming the active subsystem components are described. The design of the solar power hybrid sensor modules is discussed. Module construction and function are described. These modules combined low power CMOS electronics, GaAs solar cells, a crystal oscillatory standard UART data formatting, and a bidirectional optical data link into a single 1.25 x 1.25 x 0.25 inch hybrid package which has no need for electrical input or output. Several modules were built and tested. Applications of such a system for future space missions are also discussed
Correlating Methane Production to Microbiota in Anaerobic Digesters Fed Synthetic Wastewater
A quantitative structure activity relationship (QSAR) between relative abundance values and digester methane production rate was developed. For this, 50 triplicate anaerobic digester sets (150 total digesters) were each seeded with different methanogenic biomass samples obtained from full-scale, engineered methanogenic systems. Although all digesters were operated identically for at least 5 solids retention times (SRTs), their quasi steady-state function varied significantly, with average daily methane production rates ranging from 0.09 ± 0.004 to 1 ± 0.05 L-CH4/LR-day (LR = Liter of reactor volume) (average ± standard deviation). Digester microbial community structure was analyzed using more than 4.1 million partial 16S rRNA gene sequences of Archaea and Bacteria. At the genus level, 1300 operational taxonomic units (OTUs) were observed across all digesters, whereas each digester contained 158 ± 27 OTUs. Digester function did not correlate with typical biomass descriptors such as volatile suspended solids (VSS) concentration, microbial richness, diversity or evenness indices. However, methane production rate did correlate notably with relative abundances of one Archaeal and nine Bacterial OTUs. These relative abundances were used as descriptors to develop a multiple linear regression (MLR) QSAR equation to predict methane production rates solely based on microbial community data. The model explained over 66% of the variance in the experimental data set based on 149 anaerobic digesters with a standard error of 0.12 L-CH4/LR-day. This study provides a framework to relate engineered process function and microbial community composition which can be further expanded to include different feed stocks and digester operating conditions in order to develop a more robust QSAR model
The Unusual Substrate Specificity of a Virulence Associated Serine Hydrolase from the Highly Toxic Bacterium, \u3cem\u3eFrancisella tularensis\u3c/em\u3e
Francisella tularensis is the causative agent of the highly, infectious disease, tularemia. Amongst the genes identified as essential to the virulence of F. tularensis was the proposed serine hydrolase FTT0941c. Herein, we purified FTT0941c to homogeneity and then characterized the folded stability, enzymatic activity, and substrate specificity of FTT0941c. Based on phylogenetic analysis, FTT0941c was classified within a divergent Francisella subbranch of the bacterial hormone sensitive lipase (HSL) superfamily, but with the conserved sequence motifs of a bacterial serine hydrolase. FTT0941c showed broad hydrolase activity against diverse libraries of ester substrates, including significant hydrolytic activity across alkyl ester substrates from 2 to 8 carbons in length. Among a diverse library of fluorogenic substrates, FTT0941c preferred α-cyclohexyl ester substrates, matching with the substrate specificity of structural homologues and the broad open architecture of its modeled binding pocket. By substitutional analysis, FTT0941c was confirmed to have a classic catalytic triad of Ser115, His278, and Asp248 and to remain thermally stable even after substitution. Its overall substrate specificity profile, divergent phylogenetic homology, and preliminary pathway analysis suggested potential biological functions for FTT0941c in diverse metabolic degradation pathways in F. tularensis
Lagrangian Relaxation for MAP Estimation in Graphical Models
We develop a general framework for MAP estimation in discrete and Gaussian
graphical models using Lagrangian relaxation techniques. The key idea is to
reformulate an intractable estimation problem as one defined on a more
tractable graph, but subject to additional constraints. Relaxing these
constraints gives a tractable dual problem, one defined by a thin graph, which
is then optimized by an iterative procedure. When this iterative optimization
leads to a consistent estimate, one which also satisfies the constraints, then
it corresponds to an optimal MAP estimate of the original model. Otherwise
there is a ``duality gap'', and we obtain a bound on the optimal solution.
Thus, our approach combines convex optimization with dynamic programming
techniques applicable for thin graphs. The popular tree-reweighted max-product
(TRMP) method may be seen as solving a particular class of such relaxations,
where the intractable graph is relaxed to a set of spanning trees. We also
consider relaxations to a set of small induced subgraphs, thin subgraphs (e.g.
loops), and a connected tree obtained by ``unwinding'' cycles. In addition, we
propose a new class of multiscale relaxations that introduce ``summary''
variables. The potential benefits of such generalizations include: reducing or
eliminating the ``duality gap'' in hard problems, reducing the number or
Lagrange multipliers in the dual problem, and accelerating convergence of the
iterative optimization procedure.Comment: 10 pages, presented at 45th Allerton conference on communication,
control and computing, to appear in proceeding
Equation of state and critical behavior of polymer models: A quantitative comparison between Wertheim's thermodynamic perturbation theory and computer simulations
We present an application of Wertheim's Thermodynamic Perturbation Theory
(TPT1) to a simple coarse grained model made of flexibly bonded Lennard-Jones
monomers. We use both the Reference Hyper-Netted-Chain (RHNC) and Mean
Spherical approximation (MSA) integral equation theories to describe the
properties of the reference fluid. The equation of state, the density
dependence of the excess chemical potential, and the critical points of the
liquid--vapor transition are compared with simulation results and good
agreement is found. The RHNC version is somewhat more accurate, while the MSA
version has the advantage of being almost analytic. We analyze the scaling
behavior of the critical point of chain fluids according to TPT1 and find it to
reproduce the mean field exponents: The critical monomer density is predicted
to vanish as upon increasing the chain length while the critical
temperature is predicted to reach an asymptotic finite temperature that is
attained as . The predicted asymptotic finite critical temperature
obtained from the RHNC and MSA versions of TPT1 is found to be in good
agreement with the point of our polymer model as obtained from the
temperature dependence of the single chain conformations.Comment: to appear in J.Chem.Phy
- …