4,635 research outputs found

    Computational aeroelasticity challenges and resources

    Get PDF
    In the past decade, there has been much activity in the development of computational methods for the analysis of unsteady transonic aerodynamics about airfoils and wings. Significant features are illustrated which must be addressed in the treatment of computational transonic unsteady aerodynamics. The flow regimes for an aircraft on a plot of lift coefficient vs. Mach number are indicated. The sequence of events occurring in air combat maneuvers are illustrated. And further features of transonic flutter are illustrated. Also illustrated are several types of aeroelastic response which were encountered and which offer challenges for computational methods. The four cases illustrate problem areas encountered near the boundaries of aircraft envelopes, as operating condition change from high speed, low angle conditions to lower speed, higher angle conditions

    Current status of computational methods for transonic unsteady aerodynamics and aeroelastic applications

    Get PDF
    The current status of computational methods for unsteady aerodynamics and aeroelasticity is reviewed. The key features of challenging aeroelastic applications are discussed in terms of the flowfield state: low-angle high speed flows and high-angle vortex-dominated flows. The critical role played by viscous effects in determining aeroelastic stability for conditions of incipient flow separation is stressed. The need for a variety of flow modeling tools, from linear formulations to implementations of the Navier-Stokes equations, is emphasized. Estimates of computer run times for flutter calculations using several computational methods are given. Applications of these methods for unsteady aerodynamic and transonic flutter calculations for airfoils, wings, and configurations are summarized. Finally, recommendations are made concerning future research directions

    Junior Faculty Engagement at iSchools: Personal Experience during the First Several Years

    Get PDF
    This roundtable discussion will explore how junior faculty at iSchools have been able to embed their research, teaching, and service activities within their schools, the larger institutions, and broader communities. The session will also focus on the ways in which junior faculty have received guidance in their roles--from the job search through the first several years in a tenure-track position. Roundtable leaders represent a variety of institutions and experiences--as faculty at the University of Illinois at Urbana-Champaign [WJM], the University of Maryland [SP], the University of North Carolina at Chapel Hill [PME], and the University of Texas at Austin [MW], and with doctoral-level preparation at the University of North Carolina at Chapel Hill [WJM, MW], the University of Toronto [SP], and the University of Washington [PME]. While the annual junior faculty mentoring event at the iConference specifically targets junior faculty as participants, this roundtable session offers a more inclusive environment for the discussion of this topic, specifically engaging doctoral students and senior faculty as well as their junior colleagues

    Transonic Shock Oscillations and Wing Flutter Calculated with an Interactive Boundary Layer Coupling Method

    Get PDF
    A viscous-inviscid interactive coupling method is used for the computation of unsteady transonic flows involving separation and reattachment. A lag-entrainment integral boundary layer method is used with the transonic small disturbance potential equation in the CAP-TSDV (Computational Aeroelasticity Program - Transonic Small Disturbance) code. Efficient and robust computations of steady and unsteady separated flows, including steady separation bubbles and self-excited shock-induced oscillations are presented. The buffet onset boundary for the NACA 0012 airfoil is accurately predicted and shown computationally to be a Hopf bifurcation. Shock-induced oscillations are also presented for the 18 percent circular arc airfoil. The oscillation onset boundaries and frequencies are accurately predicted, as is the experimentally observed hysteresis of the oscillations with Mach number. This latter stability boundary is identified as a jump phenomenon. Transonic wing flutter boundaries are also shown for a thin swept wing and for a typical business jet wing, illustrating viscous effects on flutter and the effect of separation onset on the wing response at flutter. Calculations for both wings show limit cycle oscillations at transonic speeds in the vicinity of minimum flutter speed indices

    Computational unsteady aerodynamics for lifting surfaces

    Get PDF
    Two dimensional problems are solved using numerical techniques. Navier-Stokes equations are studied both in the vorticity-stream function formulation which appears to be the optimal choice for two dimensional problems, using a storage approach, and in the velocity pressure formulation which minimizes the number of unknowns in three dimensional problems. Analysis shows that compact centered conservative second order schemes for the vorticity equation are the most robust for high Reynolds number flows. Serious difficulties remain in the choice of turbulent models, to keep reasonable CPU efficiency

    Total Body Electrical Conductivity for Determining Carcass Fat in Ruffed Grouse

    Get PDF
    Percent carcass fat is often considered a primary condition indice in game bird species. Although regarded as the standard for determining fat reserves, traditional sampling methods require sacrificing animals for chemical analysis via fat extraction. Lethal methods negate the ability to track condition of individuals through time. Avian physiology studies often require the assessment of conditional changes through time and among various treatments, which necessitate the use of a non-lethal method for estimating fat levels. We were able to accurately estimate fat condition in captive ruffed grouse (Bonasa umbellus) utilizing total body electrical conductivity (TOBEC). We developed predictive models to estimate percent carcass fat directly from first-order regression of TOBEC and body mass values. Validation of our best model from an independent sample (n = 10 individuals) produced an R2 = 0.85(P \u3c 0.001) for determining percent carcass fat and R2 = 0.89(P \u3c 0.001) for determining total fat mass in ruffed grouse. Future studies investigating galliform ecology or physiology could benefit from use of TOBEC for assessment of fat condition if non-lethal sampling is desired to track changes through time

    Computational methods for unsteady transonic flows

    Get PDF
    Computational methods for unsteady transonic flows are surveyed with emphasis on prediction. Computational difficulty is discussed with respect to type of unsteady flow; attached, mixed (attached/separated) and separated. Significant early computations of shock motions, aileron buzz and periodic oscillations are discussed. The maturation of computational methods towards the capability of treating complete vehicles with reasonable computational resources is noted and a survey of recent comparisons with experimental results is compiled. The importance of mixed attached and separated flow modeling for aeroelastic analysis is discussed, and recent calculations of periodic aerodynamic oscillations for an 18 percent thick circular arc airfoil are given

    Cryogenic Tunnel Pressure Measurements on a Supercritical Airfoil for Several Shock Buffet Conditions

    Get PDF
    Steady and unsteady experimental data are presented for several fixed geometry conditions from a test in the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. The purpose of this test was to obtain unsteady data for transonic conditions on a fixed and pitching supercritical airfoil at high Reynolds numbers. Data and brief analyses for several of the fixed geometry test conditions will be presented here. These are at Reynolds numbers from 6 x 10(exp 6) to 35 x 10(exp 6) bases on chord length, and span a limited range of Mach numbers and angles of attack just below and at the onset of shock buffet. Reynolds scaling effects appear in both the steady pressure data and in the onset of shock buffet at Reynolds numbers of 15 x 10(exp 6) and 3O x 10(exp 6) per chord length

    Interseismic deformation above the Sunda Megathrust recorded in coral microatolls of the Mentawai islands, West Sumatra

    Get PDF
    The geomorphology and internal stratigraphy of modern coral microatolls show that all the outer arc Mentawai islands of West Sumatra have been subsiding over the past several decades. These same islands rose as much as 3 m during the giant megathrust earthquakes of 1797 and 1833, and the current subsidence probably reflects strain accumulation that will lead to future large earthquakes. Average subsidence rates over the past half century vary from 2 to 14 mm yr^(−1) and increase southwestward, toward the subduction trench. The pattern is consistent with rates of subsidence measured by a sparse network of continuously recording Global Positioning System (cGPS) stations and with locking of a 400-km-long section of the underlying subduction megathrust, between about 1°S and 4°S. This record of subsidence and tilting, extending nearly a century into the past, implies that the region is advancing toward the occurrence of another giant earthquake. However, evidence of episodic rather than steady subsidence reflects a behavior that is more complex than simple elastic strain accumulation and relief. Most prominent of these episodes is an extensive emergence/subsidence couplet in about 1962, which may be the result of rapid, aseismic slip on the megathrust, between the islands and the trench. Lower subsidence rates recorded by the corals since about 1985 may reflect failure on many small patches within the locked section of the megathrust
    • …
    corecore