14 research outputs found

    Characterization of OsMIK in a rice mutant with reduced phytate content reveals an insertion of a rearranged retrotransposon.

    No full text
    The rice low phytic acid (lpa) mutant Os-lpa-XS110-1(XS-lpa) has ~45 % reduction in seed phytic acid (PA) compared with the wild-type cultivar Xiushui 110. Previously, a single recessive gene mutation was shown to be responsible for the lpa phenotype and was mapped to a region of chromosome 3 near OsMIK (LOC_Os03g52760) and OsIPK1 (LOC_Os03g51610), two genes involved in PA biosynthesis. Here, we report the identification of a large insert in the intron of OsMIK in the XS-lpa mutant. Sequencing of fragments amplified through TAIL-PCRs revealed that the insert was a derivative of the LINE retrotransposon gene LOC_Os03g56910. Further analyses revealed the following characteristics of the insert and its impacts: (1) the inserted sequence of LOC_Os03g56910 was split at its third exon and rejoined inversely, with its 5' and 3' flanking sequences inward and the split third exon segments outward; (2) the LOC_Os03g56910 remained in its original locus in XS-lpa, and the insertion probably resulted from homologous recombination repair of a DNA double strand break; (3) while the OsMIK transcripts of XS-lpa and Xiushui 110 were identical, substantial reductions of the transcript abundance (~87 %) and the protein level (~60 %) were observed in XS-lpa, probably due to increased methylation in its promoter region. The above findings are discussed in the context of plant mutagenesis, epigenetics and lpa breeding

    Characterization of OsMIK in a rice mutant with reduced phytate content reveals an insertion of a rearranged retrotransposon.

    No full text
    The rice low phytic acid (lpa) mutant Os-lpa-XS110-1(XS-lpa) has ~45 % reduction in seed phytic acid (PA) compared with the wild-type cultivar Xiushui 110. Previously, a single recessive gene mutation was shown to be responsible for the lpa phenotype and was mapped to a region of chromosome 3 near OsMIK (LOC_Os03g52760) and OsIPK1 (LOC_Os03g51610), two genes involved in PA biosynthesis. Here, we report the identification of a large insert in the intron of OsMIK in the XS-lpa mutant. Sequencing of fragments amplified through TAIL-PCRs revealed that the insert was a derivative of the LINE retrotransposon gene LOC_Os03g56910. Further analyses revealed the following characteristics of the insert and its impacts: (1) the inserted sequence of LOC_Os03g56910 was split at its third exon and rejoined inversely, with its 5' and 3' flanking sequences inward and the split third exon segments outward; (2) the LOC_Os03g56910 remained in its original locus in XS-lpa, and the insertion probably resulted from homologous recombination repair of a DNA double strand break; (3) while the OsMIK transcripts of XS-lpa and Xiushui 110 were identical, substantial reductions of the transcript abundance (~87 %) and the protein level (~60 %) were observed in XS-lpa, probably due to increased methylation in its promoter region. The above findings are discussed in the context of plant mutagenesis, epigenetics and lpa breeding

    Dynamics of spicule production in marine sponge Hymeniacidon perlevis during in vitro cell culture and seasonal development in the field

    No full text
    To characterize the formation of silica spicules, the dynamics of spiculogenesis of an intertidal marine sponge Hymeniacidon perlevis (Montagu 1818) (Porifera: Demospongiae) were investigated by measuring the gene expression of silicatein (the enzyme responsible for spicule silicification) and the dimensional changes of spicules during the developmental process of individual sponges and in cell cultures of primmorphs of archaeocyte-dominant cell populations. The different developmental stages of spicules were documented by time-lapse microscopy and observed by transmission electron microscopy during a 1-month culture period. During its annual life cycle, H. perlevis has four different developmental stages: dormancy, resuscitation, bloom, and decline. Field-grown individual sponge samples at different stages were collected over 7 months (March to September 2005). The dimensions of the silica spicules from these samples were microscopically measured and statistically analyzed. This analysis and the material properties of the spicules allowed them to be classified into four groups representing the different developmental stages of spiculogenesis. Silicatein expression in the bloom stage was more than 100 times higher than that in the other stages and was correlated with the spicule developmental stage. The trend of spicule formation in field-grown sponges was consistent with the trend in cell culture. A new parameter, the maturation degree (MD) of spicules (defined as the ratio of actual to theoretical silica deposition of mature spicules), was introduced to quantify spicule development. Silica spiculogenesis during H. perlevis development was delineated by comparing MD and silicatein expression

    Genes controlling low phytic acid in plants: Identifying targets for barley breeding

    No full text
    Phytic acid (myo-inositol 1, 2, 3, 4, 5, 6-hexakisphosphate) is the most abundant form of phosphorus in plant seeds. It is indigestible by both humans and nonruminant livestock and can contribute to human mineral deficiencies. The degradation of phytic acid in animal diets is necessary to overcome both environmental and nutritional issues. The development of plant cultivars with low phytic acid content is therefore an important priority. More than 25 low-phytic acid mutants have been developed in rice, maize, soybean, barley, wheat, and bean, from which 11 genes, belonging to six gene families, have been isolated and sequenced from maize, soybean, rice, and Arabidopsis. Forty-one members of the six gene families were identified in the rice genome sequence. A survey of genes coding for enzymes involved in the synthesis of phytic acid identified candidate genes for the six barley mutants with low phytic acid through comparison with syntenic regions in sequenced genomes

    Rice grain nutritional traits and their enhancement using relevant genes and QTLs through advanced approaches

    No full text

    Zinc nutrition in wheat-based cropping systems

    No full text
    Zinc (Zn) deficiency is one of the most important micronutrient disorders affecting human health. Wheat is the staple food for 35% of the world's population and is inherently low in Zn, which increases the incidence of Zn deficiency in humans. Major wheat-based cropping systems viz. rice-wheat, cotton-wheat and maize-wheat are prone to Zn deficiency due to the high Zn demand of these crops. This review highlights the role of Zn in plant biology and its effect on wheat-based cropping systems. Agronomic, breeding and molecular approaches to improve Zn nutrition and biofortification of wheat grain are discussed. Zinc is most often applied to crops through soil and foliar methods. The application of Zn through seed treatments has improved grain yield and grain Zn status in wheat. In cropping systems where legumes are cultivated in rotation with wheat, microorganisms can improve the available Zn pool in soil for the wheat crop. Breeding and molecular approaches have been used to develop wheat genotypes with high grain Zn density. Options for improving grain yield and grain Zn concentration in wheat include screening wheat genotypes for higher root Zn uptake and grain translocation efficiency, the inclusion of these Zn-efficient genotypes in breeding programs, and Zn fertilization through soil, foliar and seed treatments
    corecore