104 research outputs found

    The pathology of familial breast cancer: Morphological aspects

    Get PDF
    A small proportion of breast cancers are due to a heritable predisposition. Recently, two predisposition genes, BRCA1 and BRCA2, have been identified and cloned. The morphological features of tumours from patients harbouring mutations in the BRCA1 and BRCA2 genes differ from each other and from sporadic breast cancers. Both are of higher grade than are sporadic cases. An excess of medullary/atypical medullary carcinoma has been reported in patients with BRCA1 mutations. Multifactorial analysis, however, shows that the only features independently associated with BRCA1 mutations are a high mitotic count, pushing tumour margins and a lymphocytic infiltrate. For BRCA2 mutation, an association with tubular/lobular carcinoma has been suggested, but not substantiated in a larger Breast Cancer Linkage Consortium study. In multifactorial analysis, the independent features were a lack of tubule formation and pushing tumour margins only. The morphological analysis has implications for clinical management of patients

    Surface Modification and Planar Defects of Calcium Carbonates by Magnetic Water Treatment

    Get PDF
    Powdery calcium carbonates, predominantly calcite and aragonite, with planar defects and cation–anion mixed surfaces as deposited on low-carbon steel by magnetic water treatment (MWT) were characterized by X-ray diffraction, electron microscopy, and vibration spectroscopy. Calcite were found to form faceted nanoparticles having 3x () commensurate superstructure and with well-developed {} and {} surfaces to exhibit preferred orientations. Aragonite occurred as laths having 3x () commensurate superstructure and with well-developed () surface extending along [100] direction up to micrometers in length. The (hkil)-specific coalescence of calcite and rapid lath growth of aragonite under the combined effects of Lorentz force and a precondensation event account for a beneficial larger particulate/colony size for the removal of the carbonate scale from the steel substrate. The coexisting magnetite particles have well-developed {011} surfaces regardless of MWT

    Climate change, precipitation and impacts on an estuarine refuge from disease

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e18849, doi:10.1371/journal.pone.0018849.Oysters play important roles in estuarine ecosystems but have suffered recently due to overfishing, pollution, and habitat loss. A tradeoff between growth rate and disease prevalence as a function of salinity makes the estuarine salinity transition of special concern for oyster survival and restoration. Estuarine salinity varies with discharge, so increases or decreases in precipitation with climate change may shift regions of low salinity and disease refuge away from optimal oyster bottom habitat, negatively impacting reproduction and survival. Temperature is an additional factor for oyster survival, and recent temperature increases have increased vulnerability to disease in higher salinity regions. We examined growth, reproduction, and survival of oysters in the New York Harbor-Hudson River region, focusing on a low-salinity refuge in the estuary. Observations were during two years when rainfall was above average and comparable to projected future increases in precipitation in the region and a past period of about 15 years with high precipitation. We found a clear tradeoff between oyster growth and vulnerability to disease. Oysters survived well when exposed to intermediate salinities during two summers (2008, 2010) with moderate discharge conditions. However, increased precipitation and discharge in 2009 reduced salinities in the region with suitable benthic habitat, greatly increasing oyster mortality. To evaluate the estuarine conditions over longer periods, we applied a numerical model of the Hudson to simulate salinities over the past century. Model results suggest that much of the region with suitable benthic habitat that historically had been a low salinity refuge region may be vulnerable to higher mortality under projected increases in precipitation and discharge. Predicted increases in precipitation in the northeastern United States due to climate change may lower salinities past important thresholds for oyster survival in estuarine regions with appropriate substrate, potentially disrupting metapopulation dynamics and impeding oyster restoration efforts, especially in the Hudson estuary where a large basin constitutes an excellent refuge from disease.Funding was provided by the Hudson River Foundation, grant number 00607A, and the New York State Department of Environmental Conservation (MOU 2008)

    A Common Cortical Circuit Mechanism for Perceptual Categorical Discrimination and Veridical Judgment

    Get PDF
    Perception involves two types of decisions about the sensory world: identification of stimulus features as analog quantities, or discrimination of the same stimulus features among a set of discrete alternatives. Veridical judgment and categorical discrimination have traditionally been conceptualized as two distinct computational problems. Here, we found that these two types of decision making can be subserved by a shared cortical circuit mechanism. We used a continuous recurrent network model to simulate two monkey experiments in which subjects were required to make either a two-alternative forced choice or a veridical judgment about the direction of random-dot motion. The model network is endowed with a continuum of bell-shaped population activity patterns, each representing a possible motion direction. Slow recurrent excitation underlies accumulation of sensory evidence, and its interplay with strong recurrent inhibition leads to decision behaviors. The model reproduced the monkey's performance as well as single-neuron activity in the categorical discrimination task. Furthermore, we examined how direction identification is determined by a combination of sensory stimulation and microstimulation. Using a population-vector measure, we found that direction judgments instantiate winner-take-all (with the population vector coinciding with either the coherent motion direction or the electrically elicited motion direction) when two stimuli are far apart, or vector averaging (with the population vector falling between the two directions) when two stimuli are close to each other. Interestingly, for a broad range of intermediate angular distances between the two stimuli, the network displays a mixed strategy in the sense that direction estimates are stochastically produced by winner-take-all on some trials and by vector averaging on the other trials, a model prediction that is experimentally testable. This work thus lends support to a common neurodynamic framework for both veridical judgment and categorical discrimination in perceptual decision making

    Cortical and cerebellar activation induced by reflexive and voluntary saccades

    Get PDF
    Reflexive saccades are driven by visual stimulation whereas voluntary saccades require volitional control. Behavioral and lesional studies suggest that there are two separate mechanisms involved in the generation of these two types of saccades. This study investigated differences in cerebral and cerebellar activation between reflexive and self-paced voluntary saccadic eye movements using functional magnetic resonance imaging. In two experiments (whole brain and cerebellum) using the same paradigm, differences in brain activations induced by reflexive and self-paced voluntary saccades were assessed. Direct comparison of the activation patterns showed that the frontal eye fields, parietal eye field, the motion-sensitive area (MT/V5), the precuneus (V6), and the angular and the cingulate gyri were more activated in reflexive saccades than in voluntary saccades. No significant difference in activation was found in the cerebellum. Our results suggest that the alleged separate mechanisms for saccadic control of reflexive and self-paced voluntary are mainly observed in cerebral rather than cerebellar areas

    Neural Correlates of Visual Motion Prediction

    Get PDF
    Predicting the trajectories of moving objects in our surroundings is important for many life scenarios, such as driving, walking, reaching, hunting and combat. We determined human subjects’ performance and task-related brain activity in a motion trajectory prediction task. The task required spatial and motion working memory as well as the ability to extrapolate motion information in time to predict future object locations. We showed that the neural circuits associated with motion prediction included frontal, parietal and insular cortex, as well as the thalamus and the visual cortex. Interestingly, deactivation of many of these regions seemed to be more closely related to task performance. The differential activity during motion prediction vs. direct observation was also correlated with task performance. The neural networks involved in our visual motion prediction task are significantly different from those that underlie visual motion memory and imagery. Our results set the stage for the examination of the effects of deficiencies in these networks, such as those caused by aging and mental disorders, on visual motion prediction and its consequences on mobility related daily activities

    Neutrinos

    Get PDF
    229 pages229 pages229 pagesThe Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms
    • …
    corecore