5 research outputs found
High-fidelity transmission of entanglement over a high-loss freespace channel
Quantum entanglement enables tasks not possible in classical physics. Many
quantum communication protocols require the distribution of entangled states
between distant parties. Here we experimentally demonstrate the successful
transmission of an entangled photon pair over a 144 km free-space link. The
received entangled states have excellent, noise-limited fidelity, even though
they are exposed to extreme attenuation dominated by turbulent atmospheric
effects. The total channel loss of 64 dB corresponds to the estimated
attenuation regime for a two-photon satellite quantum communication scenario.
We confirm that the received two-photon states are still highly entangled by
violating the CHSH inequality by more than 5 standard deviations. From a
fundamental point of view, our results show that the photons are virtually not
subject to decoherence during their 0.5 ms long flight through air, which is
encouraging for future world-wide quantum communication scenarios.Comment: 5 pages, 3 figures, replaced paper with published version, added
journal referenc
Space-borne Bose-Einstein condensation for precision interferometry
Space offers virtually unlimited free-fall in gravity. Bose-Einstein
condensation (BEC) enables ineffable low kinetic energies corresponding to
pico- or even femtokelvins. The combination of both features makes atom
interferometers with unprecedented sensitivity for inertial forces possible and
opens a new era for quantum gas experiments. On January 23, 2017, we created
Bose-Einstein condensates in space on the sounding rocket mission MAIUS-1 and
conducted 110 experiments central to matter-wave interferometry. In particular,
we have explored laser cooling and trapping in the presence of large
accelerations as experienced during launch, and have studied the evolution,
manipulation and interferometry employing Bragg scattering of BECs during the
six-minute space flight. In this letter, we focus on the phase transition and
the collective dynamics of BECs, whose impact is magnified by the extended
free-fall time. Our experiments demonstrate a high reproducibility of the
manipulation of BECs on the atom chip reflecting the exquisite control features
and the robustness of our experiment. These properties are crucial to novel
protocols for creating quantum matter with designed collective excitations at
the lowest kinetic energy scales close to femtokelvins.Comment: 6 pages, 4 figure
