745 research outputs found

    c-di-AMP, a likely master regulator of bacterial K + homeostasis machinery, activates a K + exporter

    Get PDF
    bis-(3',5')-cyclic diadenosine monophosphate (c-di-AMP) is a second messenger with roles in virulence, cell wall and biofilm formation, and surveillance of DNA integrity in many bacterial species, including pathogens. Strikingly, it has also been proposed to coordinate the activity of the components of K+ homeostasis machinery, inhibiting K+ import, and activating K+ export. However, there is a lack of quantitative evidence supporting the direct functional impact of c-di-AMP on K+ transporters. To gain a detailed understanding of the role of c-di-AMP on the activity of a component of the K+ homeostasis machinery in B. subtilis, we have characterized the impact of c-di-AMP on the functional, biochemical, and physiological properties of KhtTU, a K+/H+ antiporter composed of the membrane protein KhtU and the cytosolic protein KhtT. We have confirmed c-di-AMP binding to KhtT and determined the crystal structure of this complex. We have characterized in vitro the functional properties of KhtTU and KhtU alone and quantified the impact of c-di-AMP and of pH on their activity, demonstrating that c-di-AMP activates KhtTU and that pH increases its sensitivity to this nucleotide. Based on our functional and structural data, we were able to propose a mechanism for the activation of KhtTU by c-di-AMP. In addition, we have analyzed the impact of KhtTU in its native bacterium, providing a physiological context for the regulatory function of c-di-AMP and pH. Overall, we provide unique information that supports the proposal that c-di-AMP is a master regulator of K+ homeostasis machinery.We acknowledge the SOLEIL and ALBA synchrotrons for access and thank their staff for help with data collection. Support of the Biochemical and Biophysical Technologies, Cell Culture and Genotyping and X-ray Crystallography scientific platforms of i3S (Porto, Portugal) is also acknowledged. Mass spectrometry analysis was performed by Hugo Osório at the i3S Proteomics Scientific Platform. This work had support from the Portuguese Mass Spectrometry Network, integrated in the National Roadmap of Research Infrastructures of Strategic Relevance (ROTEIRO/0028/2013; LISBOA-01-0145-FEDER-022125). Work was supported by FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020-Operational Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the projects POCI-01–0145-FEDER-029863(PTDC/BIABQM/29863/2017) and by Fundação Luso-Americana para o Desenvolvimento through the FLAD Life Science 2020 award ‘Bacterial K+ transporters are potential antimicrobial targets: mechanisms of transport and regulation’

    Characterization of the molecular properties of KtrC, a second RCK domain that regulates a Ktr channel in Bacillus subtilis

    Get PDF
    RCK (regulating conductance of K+) domains are common regulatory domains that control the activity of eukaryotic and prokaryotic K+ channels and transporters. In bacteria these domains play roles in osmoregulation, regulation of turgor and membrane potential and in pH homeostasis. Whole-genome sequencing unveiled RCK gene redundancy, however the biological role of this redundancy is not well understood. In Bacillus subtilis, there are two closely related RCK domain proteins (KtrA and KtrC) that regulate the activity of the Ktr cation channels. KtrA has been well characterized but little is known about KtrC. We have characterized the structural and biochemical proprieties of KtrC and conclude that KtrC binds ATP and ADP, just like KtrA. However, in solution KtrC exist in a dynamic equilibrium between octamers and non-octameric species that is dependent on the bound ligand, with ATP destabilizing the octameric ring relative to ADP. Accordingly, KtrC-ADP crystal structures reveal closed octameric rings similar to those in KtrA, while KtrC-ATP adopts an open assembly with RCK domains forming a super-helix. In addition, both KtrC-ATP and -ADP octamers are stabilized by the signaling molecule cyclic-di-AMP, which binds to KtrC with high affinity. In contrast, c-di-AMP binds with 100-fold lower affinity to KtrA. Despite these differences we show with an E. coli complementation assay that KtrC and KtrA are interchangeable and able to form functional transporters with both KtrB and KtrD. The distinctive properties of KtrC, in particular ligand-dependent assembly/disassembly, suggest that this protein has a specific physiological role that is distinct from KtrA.Work was supported by Fundação Luso-Americana para o Desenvolvimento through the FLAD Life Science 2020 award entitled “Bacterial K+ transporters are potential antimicrobial targets: mechanisms of transport and regulation” and by FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-029863 (PTDC/BIA-BQM/29863/2017) and of project "Institute for Research and Innovation in Health Sciences" (POCI-01-0145-FEDER-007274). RR was supported by FCT fellowship (SFRH/BPD/111525/2015), CMT-D was supported by FCT fellowship (SFRH/BD/123761/2016 ).

    Accelerating black holes and spinning spindles

    Get PDF
    We study solutions in the Plebański–Demiański family which describe an accelerating, rotating, and dyonically charged black hole in AdS 4 . These are solutions of D = 4 Einstein-Maxwell theory with a negative cosmological constant and hence minimal D = 4 gauged supergravity. It is well known that when the acceleration is nonvanishing the D = 4 black hole metrics have conical singularities. By uplifting the solutions to D = 11 supergravity using a regular Sasaki-Einstein seven-manifold, S E 7 , we show how the free parameters can be chosen to eliminate the conical singularities. Topologically, the D = 11 solutions incorporate an S E 7 fibration over a two-dimensional weighted projective space, W C P 1 [ n − , n + ] , also known as a spindle, which is labeled by two integers that determine the conical singularities of the D = 4 metrics. We also discuss the supersymmetric and extremal limit and show that the near horizon limit gives rise to a new family of regular supersymmetric AdS 2 × Y 9 solutions of D = 11 supergravity, which generalize a known family by the addition of a rotation parameter. We calculate the entropy of these black holes and argue that it should be possible to derive this from certain N = 2 , d = 3 quiver gauge theories compactified on a spinning spindle with the appropriate magnetic flux

    Implied volatility of basket options at extreme strikes

    Full text link
    In the paper, we characterize the asymptotic behavior of the implied volatility of a basket call option at large and small strikes in a variety of settings with increasing generality. First, we obtain an asymptotic formula with an error bound for the left wing of the implied volatility, under the assumption that the dynamics of asset prices are described by the multidimensional Black-Scholes model. Next, we find the leading term of asymptotics of the implied volatility in the case where the asset prices follow the multidimensional Black-Scholes model with time change by an independent increasing stochastic process. Finally, we deal with a general situation in which the dependence between the assets is described by a given copula function. In this setting, we obtain a model-free tail-wing formula that links the implied volatility to a special characteristic of the copula called the weak lower tail dependence function

    High-fidelity transmission of entanglement over a high-loss freespace channel

    Full text link
    Quantum entanglement enables tasks not possible in classical physics. Many quantum communication protocols require the distribution of entangled states between distant parties. Here we experimentally demonstrate the successful transmission of an entangled photon pair over a 144 km free-space link. The received entangled states have excellent, noise-limited fidelity, even though they are exposed to extreme attenuation dominated by turbulent atmospheric effects. The total channel loss of 64 dB corresponds to the estimated attenuation regime for a two-photon satellite quantum communication scenario. We confirm that the received two-photon states are still highly entangled by violating the CHSH inequality by more than 5 standard deviations. From a fundamental point of view, our results show that the photons are virtually not subject to decoherence during their 0.5 ms long flight through air, which is encouraging for future world-wide quantum communication scenarios.Comment: 5 pages, 3 figures, replaced paper with published version, added journal referenc

    Control over phase separation and nucleation using a laser-tweezing potential

    Get PDF
    Control over the nucleation of new phases is highly desirable but elusive. Even though there is a long history of crystallization engineering by varying physicochemical parameters, controlling which polymorph crystallizes or whether a molecule crystallizes or forms an amorphous precipitate is still a poorly understood practice. Although there are now numerous examples of control using laser-induced nucleation, the absence of physical understanding is preventing progress. Here we show that the proximity of a liquid–liquid critical point or the corresponding binodal line can be used by a laser-tweezing potential to induce concentration gradients. A simple theoretical model shows that the stored electromagnetic energy of the laser beam produces a free-energy potential that forces phase separation or triggers the nucleation of a new phase. Experiments in a liquid mixture using a low-power laser diode confirm the effect. Phase separation and nucleation using a laser-tweezing potential explains the physics behind non-photochemical laser-induced nucleation and suggests new ways of manipulating matter

    Do institutional arrangements make a difference to transport policy and implementation? Lessons for Britain

    Get PDF
    This paper describes local government decision-making in transport in three areas of the UK, London, West Yorkshire and Edinburgh, in which major changes in local government decision-making structures have taken place over the last decade, and between which arrangements are now very different. The research discusses whether institutional change has had a beneficial or adverse effect, and whether any of the current structures provides a more effective framework for policy development and implementation. The results show that although the sites share a broadly common set of objectives there are differences in devolved responsibilities and in the extent to which various policy options are within the control of the bodies charged with transport policy delivery. The existence of several tiers of government, coupled with the many interactions required between these public sector bodies and the predominantly private sector public transport operators appears to create extra transactional barriers and impedes the implementation of the most effective measures for cutting congestion. There is, however, a compelling argument for the presence of an overarching tier of government to organise travel over a spatial scale compatible with that of major commuter patterns. The extent to which such arrangements currently appear to work is a function of the range of powers and the funding levels afforded to the co-ordinating organisation

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code
    corecore