1,191 research outputs found
A non-canonical ESCRT pathway, including His domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC Class I
The Kaposi’s sarcoma-associated herpes virus (KSHV) K3 viral gene product effectively down-regulates cell surface MHC Class I. K3 is an E3 ubiquitin ligase that promotes K63-linked polyubiquitination of MHC Class I, providing the signal for clathrin mediated endocytosis. Endocytosis is followed by sorting into the intralumenal vesicles (ILVs) of multivesicular bodies (MVBs) and eventual delivery to lysosomes. The sorting of MHC Class I into MVBs requires many individual proteins of the four endosomal sorting complexes required for transport (ESCRTs). In HeLa cells expressing the KSHV K3 ubiquitin ligase, the effect of RNA interference-mediated depletion of individual proteins of the ESCRT-0 and ESCRT-I complexes and three ESCRT-III proteins showed that these are required to down-regulate MHC Class I. However, depletion of proteins of the ESCRT-II complex or of the ESCRT-III protein, VPS20/CHMP6, failed to prevent the loss of MHC Class I from the cell surface. Depletion of His domain phosphotyrosine phosphatase (HD-PTP) resulted in an increase in the cell surface concentration of MHC Class I in HeLa cells expressing the KSHV K3 ubiquitin ligase. Rescue experiments with wild type and mutant HD-PTP supported the conclusion that HD-PTP acts as an alternative to ESCRT-II and VPS20/CHMP6 as a link between the ESCRT-I and those ESCRT-III protein(s) necessary for ILV formation. Thus, the down-regulation of cell surface MHC Class I, polyubiquitinated by the KSHV K3 ubiquitin ligase, does not employ the canonical ESCRT pathway, but instead utilizes an alternative pathway in which HD-PTP replaces ESCRT-II and VPS20/CHMP6
Practical implementation, characterization and applications of a multi-colour time-gated luminescence microscope
Time-gated luminescence microscopy using long-lifetime molecular probes can effectively eliminate autofluorescence to enable high contrast imaging. Here we investigate a new strategy of time-gated imaging for simultaneous visualisation of multiple species of microorganisms stained with long-lived complexes under low-background conditions. This is realized by imaging two pathogenic organisms (Giardia lamblia stained with a red europium probe and Cryptosporidium parvum with a green terbium probe) at UV wavelengths (320-400 nm) through synchronization of a flash lamp with high repetition rate (1 kHz) to a robust time-gating detection unit. This approach provides four times enhancement in signal-to-background ratio over non-time-gated imaging, while the average signal intensity also increases six-fold compared with that under UV LED excitation. The high sensitivity is further confirmed by imaging the single europium-doped Y2O2S nanocrystals (150 nm). We report technical details regarding the time-gating detection unit and demonstrate its compatibility with commercial epi-fluorescence microscopes, providing a valuable and convenient addition to standard laboratory equipment
Mangarara Formation: exhumed remnants of a middle Miocene, temperate carbonate, submarine channel-fan system on the eastern margin of Taranaki Basin, New Zealand
The middle Miocene Mangarara Formation is a thin (1–60 m), laterally discontinuous unit of moderately to highly calcareous (40–90%) facies of sandy to pure limestone, bioclastic sandstone, and conglomerate that crops out in a few valleys in North Taranaki across the transition from King Country Basin into offshore Taranaki Basin. The unit occurs within hemipelagic (slope) mudstone of Manganui Formation, is stratigraphically associated with redeposited sandstone of Moki Formation, and is overlain by redeposited volcaniclastic sandstone of Mohakatino Formation. The calcareous facies of the Mangarara Formation are interpreted to be mainly mass-emplaced deposits having channelised and sheet-like geometries, sedimentary structures supportive of redeposition, mixed environment fossil associations, and stratigraphic enclosure within bathyal mudrocks and flysch. The carbonate component of the deposits consists mainly of bivalves, larger benthic foraminifers (especially Amphistegina), coralline red algae including rhodoliths (Lithothamnion and Mesophyllum), and bryozoans, a warm-temperate, shallow marine skeletal association. While sediment derivation was partly from an eastern contemporary shelf, the bulk of the skeletal carbonate is inferred to have been sourced from shoal carbonate factories around and upon isolated basement highs (Patea-Tongaporutu High) to the south. The Mangarara sediments were redeposited within slope gullies and broad open submarine channels and lobes in the vicinity of the channel-lobe transition zone of a submarine fan system. Different phases of sediment transport and deposition (lateral-accretion and aggradation stages) are identified in the channel infilling. Dual fan systems likely co-existed, one dominating and predominantly siliciclastic in nature (Moki Formation), and the other infrequent and involving the temperate calcareous deposits of Mangarara Formation. The Mangarara Formation is an outcrop analogue for middle Miocene-age carbonate slope-fan deposits elsewhere in subsurface Taranaki Basin, New Zealand
TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.
The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas
Estimation of optimal birth weights and gestational ages for twin births in Japan
BACKGROUND: As multiple pregnancies show a higher incidence of complications than singletons and carry a higher perinatal risk, the calculation of birth weight – and gestational age (GA)-specific perinatal mortality rates (PMR) for multiple births is necessary in order to estimate the lowest PMR for these groups. METHODS: Details of all reported twins (192,987 live births, 5,539 stillbirths and 1,830 early neonatal deaths) in Japan between 1990 and 1999 were analyzed and compared with singletons (10,021,275 live births, 63,972 fetal deaths and 16,862 early neonatal deaths) in the annual report of vital statistics of Japan. The fetal death rate (FDR) and PMR were calculated for each category of birth weight at 500-gram intervals and GA at four-week intervals. The FDR according to birth weight and GA category was calculated as fetal deaths/(fetal deaths + live births) × 1000. The perinatal mortality rate (PMR) according to birth weight and GA category, was calculated as (fetal deaths + early neonatal deaths)/(fetal deaths + live births) × 1000. Within each category, the lowest FDR and PMR were assigned with a relative risk (RR) of 1.0 as a reference and all other rates within each category were compared to this lowest rate. RESULTS: The overall PMR per 1,000 births for singletons was 6.9, and the lowest PMR was 1.1 for birth weight (3.5–4.0 kg) and GA (40- weeks). For twins, the overall PMR per 1,000 births was 36.8, and the lowest PMR was 3.9 for birth weight (2.5–3.0 kg) and GA (36–39 weeks). At optimal birth weight and GA, the PMR was reduced to 15.9 percent for singletons, and 10.6 percent for twins, compared to the overall PMR. The risk of perinatal mortality was greater in twins than in singletons at the same deviation from the ideal category of each plurality. CONCLUSION: PMRs are potentially reduced by attaining the ideal birth weight and GA. More than 90 percent of mortality could be reduced by attaining the optimal GA and birth weight in twins by taking particular care to ensure appropriate pregnancy weight gain, as well as adequate control for obstetric complications
Does hypoglycemia following a glucose challenge test identify a high risk pregnancy?
<p>Abstract</p> <p>Objective</p> <p>An association between maternal hypoglycemia during pregnancy with fetal growth restriction and overall perinatal mortality has been reported. In a retrospective pilot study we found that hypoglycemia was linked with a greater number of special care/neonatal intensive care unit admissions and approached significance in the number of women who developed preeclampsia. That study was limited by its retrospective design, a narrow patient population and the inability to perform multivariate analysis because of the limitations in the data points collected. This study was undertaken to compare the perinatal outcome in pregnancies with hyoglycemia following a glucose challenge test (GCT) to pregnancies with a normal GCT.</p> <p>Methods</p> <p>Obstetric patients (not pre-gestational diabetics or gestational diabetes before 24 weeks were eligible. Women with a 1 hour glucose ≤ 88 mg/dL (4.8 m/mol) following a 50-gram oral GCT were matched with the next patient with a 1 hour glucose of 89–139 mg/dL. Pregnancy outcomes were evaluated.</p> <p>Results</p> <p>Over 22 months, 436 hypoglycemic patients and 434 normal subjects were identified. Hypoglycemia was increased in women < 25 (p = 0.003) and with pre-existing medical conditions (p < 0.001). Hypoglycemia was decreased if pre-pregnancy BMI ≥ 30 (p = 0.008).</p> <p>Preeclampsia/eclampsia was more common in hypoglycemic women. (OR = 3.13, 95% CI 1.51 – 6.51, p = 0.002) but not other intrapartum and perinatal outcomes.</p> <p>Conclusion</p> <p>Hypoglycemic patients are younger, have reduced pre-pregnancy weight, lower BMIs, and are more likely to develop preeclampsia than normoglycemic women.</p
Gonorrhoea and male bladder cancer in a prospective study
In a prospective cohort study, a close to two-fold elevated risk of bladder cancer was found among men reporting a history of gonorrhoea (relative risk=1.92, 95% CI=1.10–3.33). Our finding warrants further examination of the role of gonorrhoea in bladder carcinogenesis
UCS protein function is partially restored in the Saccharomyces cerevisiae she4 mutant with expression of the human UNC45-GC, but not UNC45-SM
A dedicated UNC45, Cro1, She4 (UCS) domain-containing protein assists in the Hsp90-mediated folding of the myosin head. Only weak sequence conservation exists between the single UCS protein of simple eukaryotes (She4 in budding yeast) and the two UCS proteins of higher organisms (the general cell and striated muscle UNC45s; UNC45-GC and UNC45-SM, respectively). In vertebrates, UNC45-GC facilitates cytoskeletal functions, whereas the 55% identical UNC45-SM assists assembly of the contractile apparatus of cardiac and skeletal muscles. A Saccharomyces cerevisiae she4Δ mutant, totally lacking any UCS protein, was engineered to express as its sole Hsp90 either the Hsp90α or the Hsp90β isoforms of human cytosolic Hsp90. A transient induction of the human UNC45-GC, but not UNC45-SM, could rescue the defective endocytosis in these she4Δ cells at 39 °C, irrespective of whether they possessed Hsp90α or Hsp90β. UNC45-GC-mediated rescue of the localisation of a Myo5-green fluorescent protein (GFP) fusion to cortical patches at 39 °C was more efficient in the yeast containing Hsp90α, though this may relate to more efficient functioning of Hsp90α as compared to Hsp90β in these strains. Furthermore, inducible expression of UNC45-GC, but not UNC45-SM, could partially rescue survival at a more extreme temperature (45 °C) that normally causes she4Δ mutant yeast cells to lyse. The results indicate that UCS protein function has been most conserved-yeast to man-in the UNC45-GC, not UNC45-SM. This may reflect UNC45-GC being the vertebrate UCS protein that assists formation of the actomyosin complexes needed for cytokinesis, cell morphological change, and organelle trafficking-events also facilitated by the myosins in yeast
- …