27,718 research outputs found
Mechanisms and functional significance of aberrant seizure-induced hippocampal neurogenesis
Studies of experimental mesial temporal lobe epilepsy (mTLE) indicate that prolonged seizures in the adult not only damage the hippocampal formation but also dramatically stimulate neurogenesis. Endogenous neural progenitor cells (NPCs) located in the adult rodent dentate gyrus and striatal subventricular zone are stimulated by experimental status epilepticus (SE) to generate increased numbers of dentate granule cells (DGCs) and olfactory interneurons, respectively ( Bengzon et al., 1997 ; Parent et al., 1997, 2002 ; Scott et al., 1998 ). In this review, we discuss current knowledge regarding the consequences of seizure activity on NPC proliferation, focusing on the hippocampus, and on the migration and integration of adult-born hippocampal neurons. We also describe the effects of seizure-induced neurogenesis on hippocampal network function and the potential relevance of aberrant neurogenesis to human mTLE.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65409/1/j.1528-1167.2008.01634.x.pd
Spatial imaging of Zn and other elements in Huanglongbing-affected grapefruit by synchrotron-based micro X-ray fluorescence investigation
Huanglongbing (HLB) is a highly destructive, fast-spreading disease of citrus, causing substantial economic losses to the citrus industry worldwide. Nutrient levels and their cellular distribution patterns in stems and leaves of grapefruit were analysed after graft-inoculation with lemon scions containing 'Candidatus Liberibacter asiaticus' (Las), the heat-tolerant Asian type of the HLB bacterium. After 12 months, affected plants showed typical HLB symptoms and significantly reduced Zn concentrations in leaves. Micro-XRF imaging of Zn and other nutrients showed that preferential localization of Zn to phloem tissues was observed in the stems and leaves collected from healthy grapefruit plants, but was absent from HLB-affected samples. Quantitative analysis by using standard references revealed that Zn concentration in the phloem of veins in healthy leaves was more than 10 times higher than that in HLB-affected leaves. No significant variation was observed in the distribution patterns of other elements such as Ca in stems and leaves of grapefruit plants with or without graft-inoculation of infected lemon scions. These results suggest that reduced phloem transport of Zn is an important factor contributing to HLB-induced Zn deficiency in grapefruit. Our report provides the first in situ, cellular level visualization of elemental variations within the tissues of HLB-affected citrus. © 2014 © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology
Non-modal stability analysis of low-Re separated flow around a NACA 4415 airfoil in ground effect
© 2019 Elsevier Masson SAS In this numerical–theoretical study, we perform a linear non-modal stability analysis of the separated flow around a NACA 4415 airfoil over a no-slip ground at low Reynolds numbers (300⩽Re⩽500) and high angles of attack (12∘⩽α⩽20∘). We find that: (i) the strength of the recirculation zone behind the airfoil is a key parameter controlling the absolute/convective nature of the instability in the boundary layer downstream; (ii) when Re, α or the ground clearance increases, the energy gain also increases, with the optimal perturbations switching from being three dimensional to two dimensional; and (iii) classical hairpin vortices, or Klebanoff modes, can be produced by three-dimensional optimal perturbations on a two-dimensional steady base flow containing a laminar separation bubble. Knowledge of the spatiotemporal features of the optimal mode could aid the design of advanced strategies for flow control. This study offers new insight into the transient growth behavior of airfoil–ground flow systems at low Re and high α, contributing to a better understanding of the ground-effect aerodynamics of small insects and micro aerial vehicles
On All-loop Integrands of Scattering Amplitudes in Planar N=4 SYM
We study the relationship between the momentum twistor MHV vertex expansion
of planar amplitudes in N=4 super-Yang-Mills and the all-loop generalization of
the BCFW recursion relations. We demonstrate explicitly in several examples
that the MHV vertex expressions for tree-level amplitudes and loop integrands
satisfy the recursion relations. Furthermore, we introduce a rewriting of the
MHV expansion in terms of sums over non-crossing partitions and show that this
cyclically invariant formula satisfies the recursion relations for all numbers
of legs and all loop orders.Comment: 34 pages, 17 figures; v2: Minor improvements to exposition and
discussion, updated references, typos fixe
Recommended from our members
Secreted factors from olfactory mucosa cells expanded as free-floating spheres increase neurogenesis in olfactory bulb neurosphere cultures.
BACKGROUND: The olfactory epithelium is a neurogenic tissue comprising a population of olfactory receptor neurons that are renewed throughout adulthood by a population of stem and progenitor cells. Because of their relative accessibility compared to intra-cranially located neural stem/progenitor cells, olfactory epithelium stem and progenitor cells make attractive candidates for autologous cell-based therapy. However, olfactory stem and progenitor cells expand very slowly when grown as free-floating spheres (olfactory-spheres) under growth factor stimulation in a neurosphere assay. RESULTS: In order to address whether olfactory mucosa cells extrinsically regulate proliferation and/or differentiation of immature neural cells, we cultured neural progenitor cells derived from mouse neonatal olfactory bulb or subventricular zone (SVZ) in the presence of medium conditioned by olfactory mucosa-derived spheres (olfactory-spheres). Our data demonstrated that olfactory mucosa cells produced soluble factors that affect bulbar neural progenitor cell differentiation but not their proliferation when compared to control media. In addition, olfactory mucosa derived soluble factors increased neurogenesis, especially favouring the generation of non-GABAergic neurons. Olfactory mucosa conditioned medium also contained several factors with neurotrophic/neuroprotective properties. Olfactory-sphere conditioned medium did not affect proliferation or differentiation of SVZ-derived neural progenitors. CONCLUSION: These data suggest that the olfactory mucosa does not contain factors that are inhibitory to neural stem/progenitor cell proliferation but does contain factors that steer differentiation toward neuronal phenotypes. Moreover, they suggest that the poor expansion of olfactory-spheres may be in part due to intrinsic properties of the olfactory epithelial stem/progenitor cell population.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Secreted factors from olfactory mucosa cells expanded as free-floating spheres increase neurogenesis in olfactory bulb neurosphere cultures
<p>Abstract</p> <p>Background</p> <p>The olfactory epithelium is a neurogenic tissue comprising a population of olfactory receptor neurons that are renewed throughout adulthood by a population of stem and progenitor cells. Because of their relative accessibility compared to intra-cranially located neural stem/progenitor cells, olfactory epithelium stem and progenitor cells make attractive candidates for autologous cell-based therapy. However, olfactory stem and progenitor cells expand very slowly when grown as free-floating spheres (olfactory-spheres) under growth factor stimulation in a neurosphere assay.</p> <p>Results</p> <p>In order to address whether olfactory mucosa cells extrinsically regulate proliferation and/or differentiation of immature neural cells, we cultured neural progenitor cells derived from mouse neonatal olfactory bulb or subventricular zone (SVZ) in the presence of medium conditioned by olfactory mucosa-derived spheres (olfactory-spheres). Our data demonstrated that olfactory mucosa cells produced soluble factors that affect bulbar neural progenitor cell differentiation but not their proliferation when compared to control media. In addition, olfactory mucosa derived soluble factors increased neurogenesis, especially favouring the generation of non-GABAergic neurons. Olfactory mucosa conditioned medium also contained several factors with neurotrophic/neuroprotective properties. Olfactory-sphere conditioned medium did not affect proliferation or differentiation of SVZ-derived neural progenitors.</p> <p>Conclusion</p> <p>These data suggest that the olfactory mucosa does not contain factors that are inhibitory to neural stem/progenitor cell proliferation but does contain factors that steer differentiation toward neuronal phenotypes. Moreover, they suggest that the poor expansion of olfactory-spheres may be in part due to intrinsic properties of the olfactory epithelial stem/progenitor cell population.</p
Consistency Conditions on S-Matrix of Spin 1 Massless Particles
Motivated by new techniques in the computation of scattering amplitudes of
massless particles in four dimensions, like BCFW recursion relations, the
question of how much structure of the S-matrix can be determined from purely
S-matrix arguments has received new attention. The BCFW recursion relations for
massless particles of spin 1 and 2 imply that the whole tree-level S-matrix can
be determined in terms of three-particle amplitudes (evaluated at complex
momenta). However, the known proofs of the validity of the relations rely on
the Lagrangian of the theory, either by using Feynman diagrams explicitly or by
studying the effective theory at large complex momenta. This means that a
purely S-matrix theoretic proof of the relations is still missing. The aim of
this paper is to provide such a proof for spin 1 particles by extending the
four-particle test introduced by P. Benincasa and F. Cachazo in
arXiv:0705.4305[hep-th] to all particles. We show how n-particle tests imply
that the rational function built from the BCFW recursion relations possesses
all the correct factorization channels including holomorphic and
anti-holomorphic collinear limits. This in turn implies that they give the
correct S-matrix of the theory.Comment: 24 pages, 4 figure
Potential Role of Ultrafine Particles in Associations between Airborne Particle Mass and Cardiovascular Health
Numerous epidemiologic time-series studies have shown generally consistent associations of cardiovascular hospital admissions and mortality with outdoor air pollution, particularly mass concentrations of particulate matter (PM) ≤2.5 or ≤10 μm in diameter (PM(2.5), PM(10)). Panel studies with repeated measures have supported the time-series results showing associations between PM and risk of cardiac ischemia and arrhythmias, increased blood pressure, decreased heart rate variability, and increased circulating markers of inflammation and thrombosis. The causal components driving the PM associations remain to be identified. Epidemiologic data using pollutant gases and particle characteristics such as particle number concentration and elemental carbon have provided indirect evidence that products of fossil fuel combustion are important. Ultrafine particles < 0.1 μm (UFPs) dominate particle number concentrations and surface area and are therefore capable of carrying large concentrations of adsorbed or condensed toxic air pollutants. It is likely that redox-active components in UFPs from fossil fuel combustion reach cardiovascular target sites. High UFP exposures may lead to systemic inflammation through oxidative stress responses to reactive oxygen species and thereby promote the progression of atherosclerosis and precipitate acute cardiovascular responses ranging from increased blood pressure to myocardial infarction. The next steps in epidemiologic research are to identify more clearly the putative PM casual components and size fractions linked to their sources. To advance this, we discuss in a companion article (Sioutas C, Delfino RJ, Singh M. 2005. Environ Health Perspect 113:947–955) the need for and methods of UFP exposure assessment
Multifractality in Human Heartbeat Dynamics
Recent evidence suggests that physiological signals under healthy conditions
may have a fractal temporal structure. We investigate the possibility that time
series generated by certain physiological control systems may be members of a
special class of complex processes, termed multifractal, which require a large
number of exponents to characterize their scaling properties. We report on
evidence for multifractality in a biological dynamical system --- the healthy
human heartbeat. Further, we show that the multifractal character and nonlinear
properties of the healthy heart rate are encoded in the Fourier phases. We
uncover a loss of multifractality for a life-threatening condition, congestive
heart failure.Comment: 19 pages, latex2e using rotate and epsf, with 5 ps figures; to appear
in Nature, 3 June, 199
- …