9 research outputs found

    Detailed Analysis of Scatter Contribution from Different Simulated Geometries of X-ray Detectors.

    Get PDF
    Scattering is one of the main issues left in planar mammography examinations, as it degrades the quality of the image and complicates the diagnostic process. Although widely used, anti-scatter grids have been found to be inefficient, increasing the dose delivered, the equipment price and not eliminating all the scattered radiation. Alternative scattering reduction methods, based on postprocessing algorithms using Monte Carlo (MC) simulations, are being developed to substitute anti-scatter grids. Idealized detectors are commonly used in the simulations for the purpose of simplification. In this study, the scatter distribution of three detector geometries is analyzed and compared: Case 1 makes use of idealized detector geometry, Case 2 uses a scintillator plate and Case 3 uses a more realistic detector simulation, based on the structure of an indirect mammography X-ray detector. This paper demonstrates that common configuration simplifications may introduce up to 14% of underestimation of the scatter in simulation results

    Systematic review of antiepileptic drugs’ safety and effectiveness in feline epilepsy

    Get PDF
    Understanding the efficacy and safety profile of antiepileptic drugs (AEDs) in feline epilepsy is a crucial consideration for managing this important brain disease. However, there is a lack of information about the treatment of feline epilepsy and therefore a systematic review was constructed to assess current evidence for the AEDs’ efficacy and tolerability in cats. The methods and materials of our former systematic reviews in canine epilepsy were mostly mirrored for the current systematic review in cats. Databases of PubMed, CAB Direct and Google scholar were searched to detect peer-reviewed studies reporting efficacy and/or adverse effects of AEDs in cats. The studies were assessed with regards to their quality of evidence, i.e. study design, study population, diagnostic criteria and overall risk of bias and the outcome measures reported, i.e. prevalence and 95% confidence interval of the successful and affected population in each study and in total

    Feasibility Study of Dual Energy Radiographic Imaging for Target Localization in Radiotherapy for Lung Tumors

    Get PDF
    Purpose Dual-energy (DE) radiographic imaging improves tissue discrimination by separating soft from hard tissues in the acquired images. This study was to establish a mathematic model of DE imaging based on intrinsic properties of tissues and quantitatively evaluate the feasibility of applying the DE imaging technique to tumor localization in radiotherapy. Methods We investigated the dependence of DE image quality on the radiological equivalent path length (EPL) of tissues with two phantoms using a stereoscopic x-ray imaging unit. 10 lung cancer patients who underwent radiotherapy each with gold markers implanted in the tumor were enrolled in the study approved by the hospital's Ethics Committee. The displacements of the centroids of the delineated gross tumor volumes (GTVs) in the digitally reconstructed radiograph (DRR) and in the bone-canceled DE image were compared with the averaged displacements of the centroids of gold markers to evaluate the feasibility of using DE imaging for tumor localization. Results The results of the phantom study indicated that the contrast-to-noise ratio (CNR) was linearly dependent on the difference of EPL and a mathematical model was established. The objects and backgrounds corresponding to ΔEPL less than 0.08 are visually indistinguishable in the bone-canceled DE image. The analysis of patient data showed that the tumor contrast in the bone-canceled images was improved significantly as compared with that in the original radiographic images and the accuracy of tumor localization using the DE imaging technique was comparable with that of using fiducial makers. Conclusion It is feasible to apply the technique for tumor localization in radiotherapy

    Exclusive Photoproduction of the Cascade (Xi) Hyperons

    Full text link
    We report on the first measurement of exclusive Xi-(1321) hyperon photoproduction in gamma p --> K+ K+ Xi- for 3.2 < E(gamma) < 3.9 GeV. The final state is identified by the missing mass in p(gamma,K+ K+)X measured with the CLAS detector at Jefferson Laboratory. We have detected a significant number of the ground-state Xi-(1321)1/2+, and have estimated the total cross section for its production. We have also observed the first excited state Xi-(1530)3/2+. Photoproduction provides a copious source of Xi's. We discuss the possibilities of a search for the recently proposed Xi5-- and Xi5+ pentaquarks.Comment: submitted to Phys. Rev.

    The Family Streptomycetaceae

    No full text
    The family Streptomycetaceae comprises the genera Streptomyces, Kitasatospora, and Streptacidiphilus that are very difficult to differentiate both with genotypic and phenotypic characteristics. A separate generic status for Kitasatospora and Streptacidiphilus is questionable. Members of the family can be characterized as non-acid-alcohol-fast actinomycetes that generate most often an extensively branched substrate mycelium that rarely fragments. At maturity, the aerial mycelium forms chains of few to many spores. A large variety of pigments is produced, responsible for the color of the substrate and aerial mycelium. The organisms are chemoorganotrophic with an oxidative type of metabolism and grow within different pH ranges. Streptomyces are notable for their complex developmental cycle and production of bioactive secondary metabolites, producing more than a third of commercially available antibiotics. Antibacterial, antifungal, antiparasitic, and immunosuppressant compounds have been identified as products of Streptomyces secondary metabolism. Streptomyces can be distinguished from other filamentous actinomycetes on the basis of morphological characteristics, in particular by vegetative mycelium, aerial mycelium, and arthrospores. The genus comprises at the time of writing more than 600 species with validated names. 16S rRNA gene sequence-based analysis for species delineation within the Streptomycetaceae is of limited value. The variations within the 16S rRNA genes—even in the variable regions—are too small to resolve problems of species differentiation and to establish a taxonomic structure within the genus. Comprehensive comparative studies including protein-coding gene sequences with higher phylogenetic resolution and genome-based studies are needed to clarify the species delineation within the Streptomycetaceae
    corecore