33 research outputs found

    Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity

    Get PDF
    Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activityAntimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.The authors thank T.T. Diagana (Novartis Institute for Tropical Diseases, Singapore) for provision of the compounds, the Red Cross (Australia and the USA) for the provision of human blood for cell cultures, and G. Stevenson for assistance with the triaging of compounds following screening. The authors acknowledge the Bill and Melinda Gates Foundation (grant OPP1040399 to D.A.F. and V.M.A. and grant OPP1054480 to E.A.W. and D.A.F.), the National Institutes of Health (grant R01 AI103058 to E.A.W. and D.A.F., grant R01 AI50234 to D.A.F, and R01 AI110329 to T.J.E.), the Australian Research Council (LP120200557 to V.M.A.) and the Medicines for Malaria Venture for their continued support. P.E.F. and M.I.V. are supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER).info:eu-repo/semantics/publishedVersio

    Single low dose primaquine to reduce gametocyte carriage and Plasmodium falciparum transmission after artemether-lumefantrine in children with asymptomatic infection: a randomised, double-blind, placebo-controlled trial

    Get PDF
    Background: A single low dose (0.25 mg/kg) of primaquine is recommended as a gametocytocide in combination with artemisinin-based combination therapies for Plasmodium falciparum but its effect on post-treatment gametocyte circulation and infectiousness to mosquitoes has not been quantified. Methods: In this randomised, double-blind, placebo-controlled trial, 360 asymptomatic parasitaemic children aged 2-15 years were enrolled and assigned to receive: artemether-lumefantrine (AL) and a dose of placebo; AL and a 0.25 mg/kg primaquine dose; or AL and a 0.40 mg/kg primaquine dose. On days 0, 2, 3, 7, 10 and 14, gametocytes were detected and quantified by microscopy, Pfs25 mRNA quantitative nucleic acid sequence based amplification (QT-NASBA), and quantitative reverse-transcriptase PCR (qRT-PCR). For a subset of participants, pre- and post-treatment infectiousness was assessed by mosquito feeding assays on days -1, 3, 7, 10 and 14. Results: Both primaquine arms had lower gametocyte prevalences after day 3 compared to the placebo arm, regardless of gametocyte detection method. The mean (95 % confidence interval) number of days to gametocyte clearance in children with patent gametocytes on day 0 (N = 150) was 19.7 (14.6 – 24.8), 7.7 (6.3 – 9.1) and 8.2 (6.7 – 9.6) for the AL-placebo, the 0.25 mg/kg primaquine dose and the 0.40 mg/kg primaquine dose arms, respectively. While 38.0 % (30/79) of selected gametocytaemic individuals were infectious before treatment, only 1/251 participant, from the AL-placebo group, infected mosquitoes after treatment. Conclusions: We observed similar gametocyte clearance rates after 0.25 and 0.40 mg/kg primaquine doses. Infectivity to mosquitoes after AL was very low and absent in primaquine arms

    Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages

    Get PDF
    Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these activated macrophages are found to induce phagosome maturation when infected with pathogenic Leishmania donovani. Increased co-localization of carboxyfluorescein succinimidyl ester labeled pathogenic L. donovani with Lysosome was found. Moreover, increased co-localization was observed between pathogenic L. donovani and late phagosomal markers viz. Rab7, Lysosomal Associated Membrane Protein 1, Cathepsin D, Rab9, and V-ATPase which indicate phagosome maturation. It was also observed that inhibition of V-type ATPase caused significant hindrance in attenuated Leishmania induced phagosome maturation. Finally, it was confirmed that p38 MAPK is the key player in acidification and maturation of phagosome in attenuated Leishmania strain preexposed macrophages. To our knowledge, this study for the first time reported an approach to induce phagosome maturation in L. donovani infected macrophages which could potentiate short-term prophylactic response in futur

    Relevance of laboratory testing for the diagnosis of primary immunodeficiencies: a review of case-based examples of selected immunodeficiencies

    Get PDF
    The field of primary immunodeficiencies (PIDs) is one of several in the area of clinical immunology that has not been static, but rather has shown exponential growth due to enhanced physician, scientist and patient education and awareness, leading to identification of new diseases, new molecular diagnoses of existing clinical phenotypes, broadening of the spectrum of clinical and phenotypic presentations associated with a single or related gene defects, increased bioinformatics resources, and utilization of advanced diagnostic technology and methodology for disease diagnosis and management resulting in improved outcomes and survival. There are currently over 200 PIDs with at least 170 associated genetic defects identified, with several of these being reported in recent years. The enormous clinical and immunological heterogeneity in the PIDs makes diagnosis challenging, but there is no doubt that early and accurate diagnosis facilitates prompt intervention leading to decreased morbidity and mortality. Diagnosis of PIDs often requires correlation of data obtained from clinical and radiological findings with laboratory immunological analyses and genetic testing. The field of laboratory diagnostic immunology is also rapidly burgeoning, both in terms of novel technologies and applications, and knowledge of human immunology. Over the years, the classification of PIDs has been primarily based on the immunological defect(s) ("immunophenotype") with the relatively recent addition of genotype, though there are clinical classifications as well. There can be substantial overlap in terms of the broad immunophenotype and clinical features between PIDs, and therefore, it is relevant to refine, at a cellular and molecular level, unique immunological defects that allow for a specific and accurate diagnosis. The diagnostic testing armamentarium for PID includes flow cytometry - phenotyping and functional, cellular and molecular assays, protein analysis, and mutation identification by gene sequencing. The complexity and diversity of the laboratory diagnosis of PIDs necessitates many of the above-mentioned tests being performed in highly specialized reference laboratories. Despite these restrictions, there remains an urgent need for improved standardization and optimization of phenotypic and functional flow cytometry and protein-specific assays. A key component in the interpretation of immunological assays is the comparison of patient data to that obtained in a statistically-robust manner from age and gender-matched healthy donors. This review highlights a few of the laboratory assays available for the diagnostic work-up of broad categories of PIDs, based on immunophenotyping, followed by examples of disease-specific testing

    BIOCOMPATIBILITY OF GLASS-ENCAPSULATED ELECTRONIC CHIPS (TRANSPONDERS) USED FOR THE IDENTIFICATION OF PIGS

    No full text
    The biocompatibility of electronic transponders encapsulated in two different types of glass was studied after they had been implanted subcutaneously into pigs for the purpose of identification. Rods of white crystal glass or green iron-containing glass were screened for superficial impurities by scanning electron microscopy and X-ray analysis, revealing a few crystalline and plaque impurities which were similar for both types of glass, and no differences in elemental composition. In vitro cytotoxicity tests using cell cultures of human dermal fibroblasts and haemolysis and clot formation tests in human blood after contact with the rods, showed that both types of glass were biocompatible. When implanted subcutaneously at the base of the ears of pigs for from three to 150 days, both types of transponder appeared to induce a similar connective tissue capsule, on average less than 0-2 mm in thickness, surrounding the rods. A classic foreign body reaction did not occur. It is concluded that the fibrous capsules were due to scar tissue formed around the glass rods as a result of the tissue being damaged when they were implanted. There were no significant differences between the reactions to the two types of glass. The subcutaneous implantation of glass-encapsulated transponders appears to be a good method for identifying pigs

    A P. falciparum NF54 Reporter Line Expressing mCherry-Luciferase in Gametocytes, Sporozoites, and Liver-Stages

    No full text
    Transgenic malaria parasites expressing fluorescent and bioluminescent proteins are valuable tools to interrogatemalaria-parasite biology and to evaluate drugs and vaccines. Using CRISPR/Cas9 methodology a transgenic Plasmodium falciparum (Pf) NF54 line was generated that expresses a fusion of mCherry and luciferase genes under the control of the Pf etramp10.3 gene promoter (line mCherry-luc@ etramp10.3). Pf etramp10.3 is related to rodent Plasmodium uis4 and the uis4 promoter has been used to drive high transgene expression in rodent parasite sporozoites and liver-stages. We examined transgene expression throughout the complete life cycle and compared this expression to transgenic lines expressing mCherry-luciferase and GFP-luciferase under control of the constitutive gapdh and eef1a promoters. The mCherry-luc@ etramp10.3 parasites express mCherry in gametocytes, sporozoites, and liver-stages. While no mCherry signal was detected in asexual blood-stage parasites above background levels, luciferase expression was detected in asexual blood-stages, as well as in gametocytes, sporozoites and liver-stages, with the highest levels of reporter expression detected in stage III-V gametocytes and in sporozoites. The expression of mCherry and luciferase in gametocytes and sporozoites makes this transgenic parasite line suitable to use in in vitro assays that examine the effect of transmission blocking inhibitors and to analyse gametocyte and sporozoite biology.Host-parasite interactio
    corecore