8 research outputs found
A global genotyping survey of Strongyloides stercoralis and Strongyloides fuelleborni using deep amplicon sequencing
© 2019 This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Strongyloidiasis is a neglected tropical disease caused by the human infective nematodes Strongyloides stercoralis, Strongyloides fuelleborni fuelleborni and Strongyloides fuelleborni kellyi. Previous large-scale studies exploring the genetic diversity of this important genus have focused on Southeast Asia, with a small number of isolates from the USA, Switzerland, Australia and several African countries having been genotyped. Consequently, little is known about the global distribution of geographic sub-variants of these nematodes and the genetic diversity that exists within the genus Strongyloides generally. We extracted DNA from human, dog and primate feces containing Strongyloides, collected from several countries representing all inhabited continents. Using a genotyping assay adapted for deep amplicon sequencing on the Illumina MiSeq platform, we sequenced the hyper-variable I and hyper-variable IV regions of the Strongyloides 18S rRNA gene and a fragment of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene from these specimens. We report several novel findings including unique S. stercoralis and S. fuelleborni genotypes, and the first identifications of a previously unknown S. fuelleborni infecting humans within Australia. We expand on an existing Strongyloides genotyping scheme to accommodate S. fuelleborni and these novel genotypes. In doing so, we compare our data to all 18S and cox1 sequences of S. fuelleborni and S. stercoralis available in GenBank (to our knowledge), that overlap with the sequences generated using our approach. As this analysis represents more than 1,000 sequences collected from diverse hosts and locations, representing all inhabited continents, it allows a truly global understanding of the population genetic structure of the Strongyloides species infecting humans, non-human primates, and domestic dogs
Distribuição Do Carbono Orgânico Nas Frações Do Solo Em Diferentes Ecossistemas Na Amazônia Central
Organic matter plays an important role in many soil properties, and for that reason it is necessary to identify management systems which maintain or increase its concentrations. The aim of the present study was to determine the quality and quantity of organic C in different compartments of the soil fraction in different Amazonian ecosystems. The soil organic matter (FSOM) was fractionated and soil C stocks were estimated in primary forest (PF), pasture (P), secondary succession (SS) and an agroforestry system (AFS). Samples were collected at the depths 0-5, 5-10, 10-20, 20-40, 40-60, 60-80, 80-100, 100-160, and 160-200 cm. Densimetric and particle size analysis methods were used for FSOM, obtaining the following fractions: FLF (free light fraction), IALF (intra-aggregate light fraction), F-sand (sand fraction), F-clay (clay fraction) and F-silt (silt fraction). The 0-5 cm layer contains 60% of soil C, which is associated with the FLF. The F-clay was responsible for 70% of C retained in the 0-200 cm depth. There was a 12.7 g kg-1 C gain in the FLF from PF to SS, and a 4.4 g kg-1 C gain from PF to AFS, showing that SS and AFS areas recover soil organic C, constituting feasible C-recovery alternatives for degraded and intensively farmed soils in Amazonia. The greatest total stocks of carbon in soil fractions were, in decreasing order: (101.3 Mg ha-1 of C - AFS) > (98.4 Mg ha-1 of C - FP) > (92.9 Mg ha-1 of C - SS) > (64.0 Mg ha-1 of C - P). The forms of land use in the Amazon influence C distribution in soil fractions, resulting in short- or long-term changes. © 2015, Revista Brasileira de Ciencia do Solo. All rights reserved
A global genotyping survey of Strongyloides stercoralis and Strongyloides fuelleborni using deep amplicon sequencing (vol 13, e0007609, 2019)
[This corrects the article DOI: 10.1371/journal.pntd.0007609.]