94 research outputs found

    Evaluating beauty care provided by the hospital to women suffering from breast cancer: qualitative aspects

    Get PDF
    International audienceGOALS OF WORK: Cancer patients are offered more and more access to beauty care during their stay in the hospital. This kind of intervention has not been evaluated yet. Primary objective of our research was to determine what type of evaluation strategy to be implemented (as a supportive care with quality of life and/or medical benefits; as a service providing immediate comfort); intermediate objective was to investigate in scientific terms (psychological, sociological) the experience of beauty care by patients. PATIENTS AND METHODS: Sixty patients (all users of beauty care provided by hospital, 58 female, most of them treated for breast cancer, two male, mean age 53 years) and 11 nurses and physicians, from four French cancer centres were included. We used direct observation and semi-structured interviews, conducted by a sociologist and a psychologist; different types of beauty care were concerned. RESULTS: All the interviewed patients were satisfied. Patients appreciated acquiring savoir-faire on how to use make-up and on personal image enhancement. Psychological and social well-being benefits were mentioned. The beauty care was not alleged to be reducing the side effects of the treatments, but it had helped patients to accept or bear the burden of them. Providing care beyond that which is directly curative was appreciated by the patients as a sign that they were treated as a "whole" person. CONCLUSION: The survey brings valuable clues concerning beauty care experience by cancer patients; it suggests the relevance of quantitative evaluation of the immediate and long-term effects on the quality of life

    Hydrodynamic modelling of protein conformation in solution: ELLIPS and HYDRO

    Get PDF
    The last three decades has seen some important advances in our ability to represent the conformation of proteins in solution on the basis of hydrodynamic measurements. Advances in theoretical modeling capabilities have been matched by commensurate advances in the precision of hydrodynamic measurements. We consider the advances in whole-body (simple ellipsoid-based) modeling—still useful for providing an overall idea of molecular shape, particularly for those systems where only a limited amount of data is available—and outline the ELLIPS suite of algorithms which facilitates the use of this approach. We then focus on bead modeling strategies, particularly the surface or shell–bead approaches and the HYDRO suite of algorithms. We demonstrate how these are providing great insights into complex issues such as the conformation of immunoglobulins and other multi-domain complexes

    Ligand-Dependent Conformations and Dynamics of the Serotonin 5-HT2A Receptor Determine Its Activation and Membrane-Driven Oligomerization Properties

    Get PDF
    From computational simulations of a serotonin 2A receptor (5-HT2AR) model complexed with pharmacologically and structurally diverse ligands we identify different conformational states and dynamics adopted by the receptor bound to the full agonist 5-HT, the partial agonist LSD, and the inverse agonist Ketanserin. The results from the unbiased all-atom molecular dynamics (MD) simulations show that the three ligands affect differently the known GPCR activation elements including the toggle switch at W6.48, the changes in the ionic lock between E6.30 and R3.50 of the DRY motif in TM3, and the dynamics of the NPxxY motif in TM7. The computational results uncover a sequence of steps connecting these experimentally-identified elements of GPCR activation. The differences among the properties of the receptor molecule interacting with the ligands correlate with their distinct pharmacological properties. Combining these results with quantitative analysis of membrane deformation obtained with our new method (Mondal et al, Biophysical Journal 2011), we show that distinct conformational rearrangements produced by the three ligands also elicit different responses in the surrounding membrane. The differential reorganization of the receptor environment is reflected in (i)-the involvement of cholesterol in the activation of the 5-HT2AR, and (ii)-different extents and patterns of membrane deformations. These findings are discussed in the context of their likely functional consequences and a predicted mechanism of ligand-specific GPCR oligomerization

    A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome

    Get PDF
    Down syndrome, caused by an extra copy of chromosome 21, is associated with a greatly increased risk of early onset Alzheimer disease. It is thought that this risk is conferred by the presence of three copies of the gene encoding amyloid precursor protein (APP), an Alzheimer risk factor, although the possession of extra copies of other chromosome 21 genes may also play a role. Further study of the mechanisms underlying the development of Alzheimer disease in Down syndrome could provide insights into the mechanisms that cause dementia in the general population

    Varying constants, Gravitation and Cosmology

    Get PDF
    Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. It is thus of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We thus detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, Solar system observations, meteorites dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.Comment: 145 pages, 10 figures, Review for Living Reviews in Relativit

    The future, and what might have been

    Get PDF
    We show that five important elements of the ‘nomological package’— laws, counterfactuals, chances, dispositions, and counterfactuals—needn’t be a problem for the Growing-Block view. We begin with the framework given in Briggsand Forbes (in The real truth about the unreal future. Oxford studies in metaphysics. Oxford University Press, Oxford,2012), and, taking laws as primitive, we show that the Growing-Block view has the resources to provide an account of possibility, and a natural semantics for non-backtracking causal counterfactuals. We show how objective chances might ground a more fine-grained concept of feasibility, and furnished a places in the structure where causation and dispositions might fit. The Growing-Block view, thus understood, provides the resources to explain the close link between modality and tense, so that it predicts modal change as time passes.This account lets us capture not only what the future might hold for us, and also what might have been
    • …
    corecore