230 research outputs found
The Role of IRE1Ξ± in the Degradation of Insulin mRNA in Pancreatic Ξ²-Cells
The endoplasmic reticulum (ER) is a cellular compartment for the biosynthesis and folding of newly synthesized secretory proteins such as insulin. Perturbations to ER homeostasis cause ER stress and subsequently activate cell signaling pathways, collectively known as the Unfolded Protein Response (UPR). IRE1Ξ± is a central component of the UPR. In pancreatic Ξ²-cells, IRE1Ξ± also functions in the regulation of insulin biosynthesis.Here we report that hyperactivation of IRE1Ξ± caused by chronic high glucose treatment or IRE1Ξ± overexpression leads to insulin mRNA degradation in pancreatic Ξ²-cells. Inhibition of IRE1Ξ± signaling using its dominant negative form prevents insulin mRNA degradation. Islets from mice heterozygous for IRE1Ξ± retain expression of more insulin mRNA after chronic high glucose treatment than do their wild-type littermates.These results reveal a role of IRE1Ξ± in insulin mRNA expression under ER stress conditions caused by chronic high glucose. The rapid degradation of insulin mRNA could provide immediate relief for the ER and free up the translocation machinery. Thus, this mechanism would preserve ER homeostasis and help ensure that the insulin already inside the ER can be properly folded and secreted. This adaptation may be crucial for the maintenance of Ξ²-cell homeostasis and may explain why the Ξ²-cells of type 2 diabetic patients with chronic hyperglycemia stop producing insulin in the absence of apoptosis. This mechanism may also be involved in suppression of the autoimmune type 1 diabetes by reducing the amount of misfolded insulin, which could be a source of βneo-autoantigens.
Lack of NF1 expression in a sporadic schwannoma from a patient without neurofibromatosis
The neurofibromatosis type 1 (NF1) gene encodes a tumor suppressor protein, neurofibromin, which is expressed at high levels in Schwann cells and other adult tissues. Loss of NF1 expression has been reported in Schwann cell tumors (neurofibrosarcomas) from patients with NF1 and its loss is associated with increased proliferation of these cells. In this report, we describe downregulation of NF1 expression in a single spinal schwannoma from an individual without clinical features of neurofibromatosis type 1 or 2. Barely detectable expression of NF1 RNA was found in this tumor by in situ hybridization using an NF1 -specific riboprobe as well as by Northern blot and reverse-transcribed (RT)-PCR analysis. In Schwann cells cultured from this schwannoma, abundant expression of NF1 RNA could be detected by Northern blot and RT-PCR analysis. These results suggest that, in some tumors, expression of NF1 may be downregulated by factors produced within the tumor and may represent a novel mechanism for inactivating these growth suppressing genes and allowing for increased cell proliferation in tumors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45383/1/11060_2005_Article_BF01057754.pd
Adjuvant radiation therapy in metastatic lymph nodes from melanoma
<p>Abstract</p> <p>Purpose</p> <p>To analyze the outcome after adjuvant radiation therapy with standard fractionation regimen in metastatic lymph nodes (LN) from cutaneous melanoma.</p> <p>Patients and methods</p> <p>86 successive patients (57 men) were treated for locally advanced melanoma in our institution. 60 patients (69%) underwent LN dissection followed by radiation therapy (RT), while 26 patients (31%) had no radiotherapy.</p> <p>Results</p> <p>The median number of resected LN was 12 (1 to 36) with 2 metastases (1 to 28). Median survival after the first relapse was 31.8 months. Extracapsular extension was a significant prognostic factor for regional control (p = 0.019). Median total dose was 50 Gy (30 to 70 Gy). A standard fractionation regimen was used (2 Gy/fraction). Median number of fractions was 25 (10 to 44 fractions). Patients were treated with five fractions/week. Patients with extracapsular extension treated with surgery followed by RT (total dose β₯50 Gy) had a better regional control than patients treated by surgery followed by RT with a total dose <50 Gy (80% vs. 35% at 5-year follow-up; p = 0.004).</p> <p>Conclusion</p> <p>Adjuvant radiotherapy was able to increase regional control in targeted sub-population (LN with extracapsular extension).</p
Involvement of Dopamine Receptors in Binge Methamphetamine-Induced Activation of Endoplasmic Reticulum and Mitochondrial Stress Pathways
Single large doses of methamphetamine (METH) cause endoplasmic reticulum (ER) stress and mitochondrial dysfunctions in rodent striata. The dopamine D1 receptor appears to be involved in these METH-mediated stresses. The purpose of this study was to investigate if dopamine D1 and D2 receptors are involved in ER and mitochondrial stresses caused by single-day METH binges in the rat striatum. Male Sprague-Dawley rats received 4 injections of 10 mg/kg of METH alone or in combination with a putative D1 or D2 receptor antagonist, SCH23390 or raclopride, respectively, given 30 min prior to each METH injection. Rats were euthanized at various timepoints afterwards. Striatal tissues were used in quantitative RT-PCR and western blot analyses. We found that binge METH injections caused increased expression of the pro-survival genes, BiP/GRP-78 and P58IPK, in a SCH23390-sensitive manner. METH also caused up-regulation of ER-stress genes, Atf2, Atf3, Atf4, CHOP/Gadd153 and Gadd34. The expression of heat shock proteins (HSPs) was increased after METH injections. SCH23390 completely blocked induction in all analyzed ER stress-related proteins that included ATF3, ATF4, CHOP/Gadd153, HSPs and caspase-12. The dopamine D2-like antagonist, raclopride, exerted small to moderate inhibitory influence on some METH-induced changes in ER stress proteins. Importantly, METH caused decreases in the mitochondrial anti-apoptotic protein, Bcl-2, but increases in the pro-apoptotic proteins, Bax, Bad and cytochrome c, in a SCH23390-sensitive fashion. In contrast, raclopride provided only small inhibition of METH-induced changes in mitochondrial proteins. These findings indicate that METH-induced activation of striatal ER and mitochondrial stress pathways might be more related to activation of SCH23390-sensitive receptors
TorsinA and the TorsinA-Interacting Protein Printor Have No Impact on Endoplasmic Reticulum Stress or Protein Trafficking in Yeast
Early-onset torsion dystonia is a severe, life-long disease that leads to loss of motor control and involuntary muscle contractions. While the molecular etiology of the disease is not fully understood, a mutation in an AAA+ ATPase, torsinA, has been linked to disease onset. Previous work on torsinA has shown that it localizes to the endoplasmic reticulum, where there is evidence that it plays roles in protein trafficking, and potentially also protein folding. Given the high level of evolutionary conservation among proteins involved in these processes, the ability of human such proteins to function effectively in yeast, as well as the previous successes achieved in examining other proteins involved in complex human diseases in yeast, we hypothesized that Saccharomyces cerevisiae might represent a useful model system for studying torsinA function and the effects of its mutants. Since torsinA is proposed to function in protein homeostasis, we tested cells for their ability to respond to various stressors, using a fluorescent reporter to measure the unfolded protein response, as well as their rate of protein secretion. TorsinA did not impact these processes, even after co-expression of its recently identified interacting partner, printor. In light of these findings, we propose that yeast may lack an additional cofactor necessary for torsinA function or proteins required for essential post-translational modifications of torsinA. Alternatively, torsinA may not function in endoplasmic reticulum protein homeostasis. The strains and assays we describe may provide useful tools for identifying and investigating these possibilities and are freely available.Howard Hughes Medical InstituteBachmann-Strauss Dystonia and Parkinson Foundatio
Heme Oxygenase-1 Accelerates Cutaneous Wound Healing in Mice
Heme oxygenase-1 (HO-1), a cytoprotective, pro-angiogenic and anti-inflammatory enzyme, is strongly induced in injured tissues. Our aim was to clarify its role in cutaneous wound healing. In wild type mice, maximal expression of HO-1 in the skin was observed on the 2nd and 3rd days after wounding. Inhibition of HO-1 by tin protoporphyrin-IX resulted in retardation of wound closure. Healing was also delayed in HO-1 deficient mice, where lack of HO-1 could lead to complete suppression of reepithelialization and to formation of extensive skin lesions, accompanied by impaired neovascularization. Experiments performed in transgenic mice bearing HO-1 under control of keratin 14 promoter showed that increased level of HO-1 in keratinocytes is enough to improve the neovascularization and hasten the closure of wounds. Importantly, induction of HO-1 in wounded skin was relatively weak and delayed in diabetic (db/db) mice, in which also angiogenesis and wound closure were impaired. In such animals local delivery of HO-1 transgene using adenoviral vectors accelerated the wound healing and increased the vascularization. In summary, induction of HO-1 is necessary for efficient wound closure and neovascularization. Impaired wound healing in diabetic mice may be associated with delayed HO-1 upregulation and can be improved by HO-1 gene transfer
The unfolded protein response and its relevance to connective tissue diseases
The unfolded protein response (UPR) has evolved to counter the stresses that occur in the endoplasmic reticulum (ER) as a result of misfolded proteins. This sophisticated quality control system attempts to restore homeostasis through the action of a number of different pathways that are coordinated in the first instance by the ER stress-senor proteins IRE1, ATF6 and PERK. However, prolonged ER-stress-related UPR can have detrimental effects on cell function and, in the longer term, may induce apoptosis. Connective tissue cells such as fibroblasts, osteoblasts and chondrocytes synthesise and secrete large quantities of proteins and mutations in many of these gene products give rise to heritable disorders of connective tissues. Until recently, these mutant gene products were thought to exert their effect through the assembly of a defective extracellular matrix that ultimately disrupted tissue structure and function. However, it is now becoming clear that ER stress and UPR, because of the expression of a mutant gene product, is not only a feature of, but may be a key mediator in the initiation and progression of a whole range of different connective tissue diseases. This review focuses on ER stress and the UPR that characterises an increasing number of connective tissue diseases and highlights novel therapeutic opportunities that may arise
- β¦