84 research outputs found
New technologies for examining neuronal ensembles in drug addiction and fear
Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. Additionally, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches—Daun02 inactivation, FACS sorting of activated neurons and c-fos-GFP transgenic rats — that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools — c-fos-tTA mice and inactivation of CREB-overexpressing neurons — that have been used to study the role of neuronal ensembles in conditioned fear
Nicotinic receptors
Regulation of normal or abnormal behaviour is critically controlled by the central serotonergic systems. Recent evidence has suggested that serotonin (5-HT) neurotransmission dysfunction contributes to a variety of pathological conditions, including depression, anxiety, schizophrenia and Parkinson’s disorders. There is also a great amount of evidence indicating that 5-HT signalling may affect the reinforcing properties of drugs of abuse by the interaction and modulation of dopamine (DA) function. This chapter is focused on one of the more addictive drugs, nicotine. It is widely recognised that the effects of nicotine are strongly associated with the stimulatory action it exhibits on mesolimbic DAergic function. We outline the role of 5-HT and its plethora of receptors, focusing on 5-HT2 subtypes with relation to their involvement in the neurobiology of nicotine addiction. We also explore the novel pharmacological approaches using 5-HT agents for the treatment of nicotine dependence. Compelling evidence shows that 5-HT2C receptor agonists may be possible therapeutic targets for smoking cessation, although further investigation is required.peer-reviewe
Identification of Brain Nuclei Implicated in Cocaine-Primed Reinstatement of Conditioned Place Preference: A Behaviour Dissociable from Sensitization
Relapse prevention represents the primary therapeutic challenge in the treatment of drug addiction. As with humans, drug-seeking behaviour can be precipitated in laboratory animals by exposure to a small dose of the drug (prime). The aim of this study was to identify brain nuclei implicated in the cocaine-primed reinstatement of a conditioned place preference (CPP). Thus, a group of mice were conditioned to cocaine, had this place preference extinguished and were then tested for primed reinstatement of the original place preference. There was no correlation between the extent of drug-seeking upon reinstatement and the extent of behavioural sensitization, the extent of original CPP or the extinction profile of mice, suggesting a dissociation of these components of addictive behaviour with a drug-primed reinstatement. Expression of the protein product of the neuronal activity marker c-fos was assessed in a number of brain regions of mice that exhibited reinstatement (R mice) versus those which did not (NR mice). Reinstatement generally conferred greater Fos expression in cortical and limbic structures previously implicated in drug-seeking behaviour, though a number of regions not typically associated with drug-seeking were also activated. In addition, positive correlations were found between neural activation of a number of brain regions and reinstatement behaviour. The most significant result was the activation of the lateral habenula and its positive correlation with reinstatement behaviour. The findings of this study question the relationship between primed reinstatement of a previously extinguished place preference for cocaine and behavioural sensitization. They also implicate activation patterns of discrete brain nuclei as differentiators between reinstating and non-reinstating mice
A neuronal activation correlate in striatum and prefrontal cortex of prolonged cocaine intake
A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment
This paper is a personal account on the discovery and characterization of the 5-HT2C receptor (first known as the 5- HT1C receptor) over 30 years ago and how it translated into a number of unsuspected features for a G protein-coupled receptor (GPCR) and a diversity of clinical applications. The 5-HT2C receptor is one of the most intriguing members of the GPCR superfamily. Initially referred to as 5-HT1CR, the 5-HT2CR was discovered while studying the pharmacological features and the distribution of [3H]mesulergine-labelled sites, primarily in the brain using radioligand binding and slice autoradiography. Mesulergine (SDZ CU-085), was, at the time, best defined as a ligand with serotonergic and dopaminergic properties. Autoradiographic studies showed remarkably strong [3H]mesulergine-labelling to the rat choroid plexus. [3H]mesulergine-labelled sites had pharmacological properties different from, at the time, known or purported 5-HT receptors. In spite of similarities with 5-HT2 binding, the new binding site was called 5-HT1C because of its very high affinity for 5-HT itself. Within the following 10 years, the 5-HT1CR (later named 5- HT2C) was extensively characterised pharmacologically, anatomically and functionally: it was one of the first 5-HT receptors to be sequenced and cloned. The 5-HT2CR is a GPCR, with a very complex gene structure. It constitutes a rarity in theGPCR family: many 5-HT2CR variants exist, especially in humans, due to RNA editing, in addition to a few 5-HT2CR splice variants. Intense research led to therapeutically active 5-HT2C receptor ligands, both antagonists (or inverse agonists) and agonists: keeping in mind that a number of antidepressants and antipsychotics are 5- HT2CR antagonists/inverse agonists. Agomelatine, a 5-HT2CR antagonist is registered for the treatment of major depression. The agonist Lorcaserin is registered for the treatment of aspects of obesity and has further potential in addiction, especially nicotine/ smoking. There is good evidence that the 5-HT2CR is involved in spinal cord injury-induced spasms of the lower limbs, which can be treated with 5-HT2CR antagonists/inverse agonists such as cyproheptadine or SB206553. The 5-HT2CR may play a role in schizophrenia and epilepsy. Vabicaserin, a 5-HT2CR agonist has been in development for the treatment of schizophrenia and obesity, but was stopped. As is common, there is potential for further indications for 5-HT2CR ligands, as suggested by a number of preclinical and/or genome-wide association studies (GWAS) on depression, suicide, sexual dysfunction, addictions and obesity. The 5-HT2CR is clearly affected by a number of established antidepressants/antipsychotics and may be one of the culprits in antipsychotic-induced weight gain
Conditioned Response Evoked by Nicotine Conditioned Stimulus Preferentially Induces c-Fos Expression in Medial Regions of Caudate-Putamen
Nicotine has both unconditioned and conditioned stimulus properties. Conditioned stimulus properties of nicotine may contribute to the tenacity of nicotine addiction. The purpose of this experiment was to use neurohistochemical analysis of rapidly developing c-Fos protein to elucidate neurobiological loci involved in the processing of nicotine as an interoceptive conditioned stimulus (CS). Rats were injected (SC) in an intermixed fashion with saline or nicotine (16 sessions of each) and placed in conditioning chambers where they were given one of the three conditions depending on group assignment: (a) nicotine paired 100% of the time with intermittent access to sucrose (nicotine-CS condition), (b) nicotine and saline each paired 50% of the time with sucrose (chamber-CS condition), or (c) no sucrose US control (CS-alone condition). Rats in the nicotine-CS condition acquired the discrimination as evidenced by goal-tracking (ie, increased dipper entries before initial sucrose delivery) only on nicotine sessions. The chamber-CS condition showed goal-tracking on all sessions; no goal-tracking was seen in the CS-alone condition. On the test day, rats in each condition were challenged with saline or nicotine and later assessed for c-Fos immunoreactivity. In concordance with previous reports, nicotine induced c-Fos expression in the majority of areas tested; however, learning-dependent expression was specific to dorsomedial and ventromedial regions of caudate-putamen (dmCPu, vmCPu). Only rats in the nicotine-CS condition, when challenged with nicotine, had higher c-Fos expression in the dmCPu and vmCPu. These results suggest that medial areas of CPu involved in excitatory conditioning with an appetitive nicotine CS
Co-administration of dopamine D1 and D2 agonists additively decreases daily food intake, body weight and hypothalamic neuropeptide Y level in rats
Contribution of a Mesocorticolimbic Subcircuit to Drug Context-Induced Reinstatement of Cocaine-Seeking Behavior in Rats
Cocaine-seeking behavior triggered by drug-paired environmental context exposure is dependent on orbitofrontal cortex (OFC)–basolateral amygdala (BLA) interactions. Here, we present evidence supporting the hypothesis that dopaminergic input from the ventral tegmental area (VTA) to the OFC critically regulates these interactions. In experiment 1, we employed site-specific pharmacological manipulations to show that dopamine D1-like receptor stimulation in the OFC is required for drug context-induced reinstatement of cocaine-seeking behavior following extinction training in an alternate context. Intra-OFC pretreatment with the dopamine D1-like receptor antagonist, SCH23390, dose-dependently attenuated cocaine-seeking behavior in an anatomically selective manner, without altering motor performance. Furthermore, the effects of SCH23390 could be surmounted by co-administration of a sub-threshold dose of the D1-like receptor agonist, SKF81297. In experiment 2, we examined effects of D1-like receptor antagonism in the OFC on OFC-BLA interactions using a functional disconnection manipulation. Unilateral SCH23390 administration into the OFC plus GABA agonist-induced neural inactivation of the contralateral or ipsilateral BLA disrupted drug context-induced cocaine-seeking behavior relative to vehicle, while independent unilateral manipulations of these brain regions were without effect. Finally, in experiment 3, we used fluorescent retrograde tracers to demonstrate that the VTA, but not the substantia nigra, sends dense intra- and interhemispheric projections to the OFC, which in turn has reciprocal bi-hemispheric connections with the BLA. These findings support that dopaminergic input from the VTA, via dopamine D1-like receptor stimulation in the OFC, is required for OFC–BLA functional interactions. Thus, a VTA–OFC–BLA neural circuit promotes drug context-induced motivated behavior
- …
