4,834 research outputs found

    Flavor-symmetry Breaking with Charged Probes

    Full text link
    We discuss the recombination of brane/anti-brane pairs carrying D3D3 brane charge in AdS5×S5AdS_5 \times S^5. These configurations are dual to co-dimension one defects in the N=4{\cal N}=4 super-Yang-Mills description. Due to their D3D3 charge, these defects are actually domain walls in the dual gauge theory, interpolating between vacua of different gauge symmetry. A pair of unjoined defects each carry localized (2+1)(2+1) dimensional fermions and possess a global U(N)×U(N)U(N)\times U(N) flavor symmetry while the recombined brane/anti-brane pairs exhibit only a diagonal U(N). We study the thermodynamics of this flavor-symmetry breaking under the influence of external magnetic field.Comment: 21 pages, 10 figure

    Faster subsequence recognition in compressed strings

    Full text link
    Computation on compressed strings is one of the key approaches to processing massive data sets. We consider local subsequence recognition problems on strings compressed by straight-line programs (SLP), which is closely related to Lempel--Ziv compression. For an SLP-compressed text of length mˉ\bar m, and an uncompressed pattern of length nn, C{\'e}gielski et al. gave an algorithm for local subsequence recognition running in time O(mˉn2logn)O(\bar mn^2 \log n). We improve the running time to O(mˉn1.5)O(\bar mn^{1.5}). Our algorithm can also be used to compute the longest common subsequence between a compressed text and an uncompressed pattern in time O(mˉn1.5)O(\bar mn^{1.5}); the same problem with a compressed pattern is known to be NP-hard

    Bekenstein entropy bound for weakly-coupled field theories on a 3-sphere

    Get PDF
    We calculate the high temperature partition functions for SU(Nc) or U(Nc) gauge theories in the deconfined phase on S^1 x S^3, with scalars, vectors, and/or fermions in an arbitrary representation, at zero 't Hooft coupling and large Nc, using analytical methods. We compare these with numerical results which are also valid in the low temperature limit and show that the Bekenstein entropy bound resulting from the partition functions for theories with any amount of massless scalar, fermionic, and/or vector matter is always satisfied when the zero-point contribution is included, while the theory is sufficiently far from a phase transition. We further consider the effect of adding massive scalar or fermionic matter and show that the Bekenstein bound is satisfied when the Casimir energy is regularized under the constraint that it vanishes in the large mass limit. These calculations can be generalized straightforwardly for the case of a different number of spatial dimensions.Comment: 32 pages, 12 figures. v2: Clarifications added. JHEP versio

    Magnetic effects in a holographic Fermi-like liquid

    Full text link
    We explore the magnetic properties of the Fermi-like liquid represented by the D3-D7' system. The system exhibits interesting magnetic properties such as ferromagnetism and an anomalous Hall effect, which are due to the Chern-Simons term in the effective gravitational action. We investigate the spectrum of quasi-normal modes in the presence of a magnetic field and show that the magnetic field mitigates the instability towards a striped phase. In addition, we find a critical magnetic field above which the zero sound mode becomes massive.Comment: 18 pages, 15 figure

    Chiral primary one-point functions in the D3-D7 defect conformal field theory

    Get PDF
    JHEP is an open-access journal funded by SCOAP3 and licensed under CC BY 4.0archiveprefix: arXiv primaryclass: hep-th reportnumber: NORDITA-2012-81 slaccitation: %%CITATION = ARXIV:1210.7015;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: NORDITA-2012-81 slaccitation: %%CITATION = ARXIV:1210.7015;%%C.F.K. and D.Y. were supported in part by FNU through grant number 272-08-0329. G.W.S. is supported by NSERC of Canada and by the Villum foundation through their Velux Visiting Professor program

    Comments on scaling limits of 4d N=2 theories

    Full text link
    We revisit the study of the maximally singular point in the Coulomb branch of 4d N=2 SU(N) gauge theory with N_f=2n flavors for N_f= 2, we find that the low-energy physics is described by two non-trivial superconformal field theories coupled to a magnetic SU(2) gauge group which is infrared free. (In the special case n=2, one of these theories is a theory of free hypermultiplets.) This observation removes a possible counter example to a conjectured a-theorem.Comment: 13 page

    Flavor from M5-branes

    Full text link
    We study various aspects of the defect conformal field theory that arises when placing a single M5-brane probe in AdS_4 x S^7. We derive the full set of fluctuation modes and dimensions of the corresponding dual operators. We argue that the latter does not depend on the presence of a non-trivial magnetic flux on the M5-brane world-volume. Finally we give a mass to the hypermultiplet living on the defect, and compute the resulting mesonic spectrum.Comment: 19 page

    Fluctuations of a holographic quantum Hall fluid

    Full text link
    We analyze the neutral spectrum of the holographic quantum Hall fluid described by the D2-D8' model. As expected for a quantum Hall state, we find the system to be stable and gapped and that, at least over much of the parameter space, the lowest excitation mode is a magneto-roton. In addition, we find magneto-rotons in higher modes as well. We show that these magneto-rotons are direct consequences of level crossings between vector and scalar modes.Comment: 20 pages, 8 figures; v.2 figures improved, 2 figures added, and text clarified particularly in Sec. 5, to appear in JHE

    Comments on Holographic Entanglement Entropy and RG Flows

    Full text link
    Using holographic entanglement entropy for strip geometry, we construct a candidate for a c-function in arbitrary dimensions. For holographic theories dual to Einstein gravity, this c-function is shown to decrease monotonically along RG flows. A sufficient condition required for this monotonic flow is that the stress tensor of the matter fields driving the holographic RG flow must satisfy the null energy condition over the holographic surface used to calculate the entanglement entropy. In the case where the bulk theory is described by Gauss-Bonnet gravity, the latter condition alone is not sufficient to establish the monotonic flow of the c-function. We also observe that for certain holographic RG flows, the entanglement entropy undergoes a 'phase transition' as the size of the system grows and as a result, evolution of the c-function may exhibit a discontinuous drop.Comment: References adde

    Z-extremization and F-theorem in Chern-Simons matter theories

    Full text link
    The three dimensional exact R symmetry of N=2 SCFTs extremizes the partition function localized on a three sphere. Here we verify this statement at weak coupling. We give a detailed analysis for two classes of models. The first one is an SU(N)_k gauge theory at large k with both fundamental and adjoint matter fields, while the second is a flavored version of the ABJ theory, where the CS levels are large but they do not necessarily sum up to zero. We study in both cases superpotential deformations and compute the R charges at different fixed points. When these fixed points are connected by an RG flow we explicitly verify that the free energy decreases at the endpoints of the flow between the fixed points, corroborating the conjecture of an F-theorem in three dimensions.Comment: 28 pages, 3 figures, JHEP.cls, minor corrections, references adde
    corecore