1,816 research outputs found

    Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce

    Get PDF
    The ethyl acetate-based multi-residue method for determination of pesticide residues in produce has been modified for gas chromatographic (GC) analysis by implementation of dispersive solid-phase extraction (using primary–secondary amine and graphitized carbon black) and large-volume (20 μL) injection. The same extract, before clean-up and after a change of solvent, was also analyzed by liquid chromatography with tandem mass spectrometry (LC–MS–MS). All aspects related to sample preparation were re-assessed with regard to ease and speed of the analysis. The principle of the extraction procedure (solvent, salt) was not changed, to avoid the possibility invalidating data acquired over past decades. The modifications were made with techniques currently commonly applied in routine laboratories, GC–MS and LC–MS–MS, in mind. The modified method enables processing (from homogenization until final extracts for both GC and LC) of 30 samples per eight hours per person. Limits of quantification (LOQs) of 0.01 mg kg−1 were achieved with both GC–MS (full-scan acquisition, 10 mg matrix equivalent injected) and LC–MS–MS (2 mg injected) for most of the pesticides. Validation data for 341 pesticides and degradation products are presented. A compilation of analytical quality-control data for pesticides routinely analyzed by GC–MS (135 compounds) and LC–MS–MS (136 compounds) in over 100 different matrices, obtained over a period of 15 months, are also presented and discussed. At the 0.05 mg kg−1 level acceptable recoveries were obtained for 93% (GC–MS) and 92% (LC–MS–MS) of pesticide–matrix combinations

    Determination of diquat by flow injection-chemiluminescence

    Full text link
    A simple, economic, sensitive and rapid method for the determination of the pesticide diquat was described. This new method was based on the coupling of flow injection analysis methodology and direct chemiluminescent detection; to the authors' knowledge, this approach had not been used up to now with this pesticide. It was based on its oxidation with ferricyanide in alkaline medium; significant improvements in the analytical signal were achieved by using high temperatures and quinine as sensitiser. Its high throughput (144 h(-1)), together with its low limit of detection (2 ng mL(-1)), achieved without need of preconcentration steps, permitted the reliable quantification of diquat over the linear range of (0.01-0.6) mu g mL(-1) in samples from different origins (river, tap, mineral and ground waters), even in the presence of a 40-fold concentration of paraquat, a pesticide commonly present in the commercial formulations of diquat.López-Paz, JL.; Catalá-Icardo, M.; Antón Garrido, B. (2009). Determination of diquat by flow injection-chemiluminescence. Analytical and Bioanalytical Chemistry. 394(4):1073-1079. doi:10.1007/s00216-009-2609-zS107310793944Hayes WJ Jr, Laws ER Jr (1991) Handbook of pesticide toxicology, Academic Press, San DiegoUS Environmental Protection Agency. http://www.epa.gov/06WDW/contaminants/dw_contamfs/diquat.html (accessed in August 2008)Horwitz W (2000) Official methods of analysis of AOAC International 17th edition. AOAC International, Gaithersburg, MD, USAHara S, Sasaki N, Takase D, Shiotsuka S, Ogata K, Futagami K, Tamura K (2007) Anal Sci 23(5):523–531Rial Otero R, Cancho Grande B, Pérez Lamela C, Simal Gandara J, Aria Estevez M (2006) J Chromatogr Sci 44(9):539–542Aramendia MA, Borau V, Lafont F, Marinas JM, Moreno JM, Porras JM, Urbano FJ (2006) Food Chem 97(1):181–188Nuñez O, Moyano E, Galceran MT (2004) Anal Chim Acta 525(2):183–190Martinez Vidal JL, Belmonte Vega A, Sanchez Lopez FJ, Garrido Frenich AJ (2004) Chromatogr A 1050(2):179–184Lee XP, Kumazawa T, Fujishiro M, Hasegawa C, Arinobu T, Seno H, Sato K (2004) J Mass Spectrom 39(10):1147–1152De Almeida RM, Yonamine M (2007) J Chromatogr B 853(1–2):260–264De Souza D, Machado SAS (2006) Electroanalysis 18(9):862–872De Souza D, Da Silva MRC, Machado SAS (2006) Electroanalysis 18(23):2305–2313Picó Y, Rodriguez R, Manes J (2003) Trends Anal Chem 22(3):133–151Ishiwata T (2004) Bunseki Kagaku 53(8):863–864Carneiro MC, Puignou L, Galcerán MT (2000) Anal Chim Acta 408:263Luque M, Rios A, Valcarcel M (1998) Analyst 123(11):2383–2387Perez Ruiz T, Martínez Lozano C, Tomas V (1991) Int J Environ Anal Chem 44(4):243–252Perez Ruiz T, Martínez Lozano C, Tomas V (1991) Anal Chim Acta 244(1):99–104Townshend A (1990) Analyst 115:495–500López Paz JL, Catalá Icardo M (2008) Anal Chim Acta 625:173–179Pawlicová Z, Sahuquillo I, Catalá Icardo M, García Mateo JV, Martínez Calatayud J (2006) Anal Sci 22:29–34Albert García JR, Catalá Icardo M, Martínez Calatayud J (2006) Talanta 69:608–614Tomlin CDS (1997) The pesticide manual, 11th edn.The British Crop Protection CouncilUKCatalá-Icardo M, Martínez-Calatayud J (2008) Crit Rev Anal Chem 38:118–130Ministerio de Medio Ambiente y Medio Rural y Marino. http://www.marm.es/ (accessed in September 2008)US Environmental Protection Agency. http://www.epa.gov/OGWWDW/contaminants (accessed in October 2008

    Observation and study of baryonic B decays: B -> D(*) p pbar, D(*) p pbar pi, and D(*) p pbar pi pi

    Get PDF
    We present a study of ten B-meson decays to a D(*), a proton-antiproton pair, and a system of up to two pions using BaBar's data set of 455x10^6 BBbar pairs. Four of the modes (B0bar -> D0 p anti-p, B0bar -> D*0 p anti-p, B0bar -> D+ p anti-p pi-, B0bar -> D*+ p anti-p pi-) are studied with improved statistics compared to previous measurements; six of the modes (B- -> D0 p anti-p pi-, B- -> D*0 p anti-p pi-, B0bar -> D0 p anti-p pi- pi+, B0bar -> D*0 p anti-p pi- pi+, B- -> D+ p anti-p pi- pi-, B- -> D*+ p anti-p pi- pi-) are first observations. The branching fractions for 3- and 5-body decays are suppressed compared to 4-body decays. Kinematic distributions for 3-body decays show non-overlapping threshold enhancements in m(p anti-p) and m(D(*)0 p) in the Dalitz plots. For 4-body decays, m(p pi-) mass projections show a narrow peak with mass and full width of (1497.4 +- 3.0 +- 0.9) MeV/c2, and (47 +- 12 +- 4) MeV/c2, respectively, where the first (second) errors are statistical (systematic). For 5-body decays, mass projections are similar to phase space expectations. All results are preliminary.Comment: 28 pages, 90 postscript figures, submitted to LP0

    A search for the decay modes B+/- to h+/- tau l

    Get PDF
    We present a search for the lepton flavor violating decay modes B+/- to h+/- tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472 million BBbar pairs. The search uses events where one B meson is fully reconstructed in one of several hadronic final states. Using the momenta of the reconstructed B, h, and l candidates, we are able to fully determine the tau four-momentum. The resulting tau candidate mass is our main discriminant against combinatorial background. We see no evidence for B+/- to h+/- tau l decays and set a 90% confidence level upper limit on each branching fraction at the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.

    Search for Pair Production of Scalar Top Quarks Decaying to a tau Lepton and a b Quark in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    We search for pair production of supersymmetric top quarks (~t_1), followed by R-parity violating decay ~t_1 -> tau b with a branching ratio beta, using 322 pb^-1 of ppbar collisions at sqrt{s}=1.96 TeV collected by the CDF II detector at Fermilab. Two candidate events pass our final selection criteria, consistent with the standard model expectation. We set upper limits on the cross section sigma(~t_1 ~tbar_1)*beta^2 as a function of the stop mass m(~t_1). Assuming beta=1, we set a 95% confidence level limit m(~t_1)>153 GeV/c^2. The limits are also applicable to the case of a third generation scalar leptoquark (LQ_3) decaying LQ_3 -> tau b.Comment: 7 pages, 2 eps figure

    The Origin and Evolutionary History of HIV-1 Subtype C in Senegal

    Get PDF
    Background: The classification of HIV-1 strains in subtypes and Circulating Recombinant Forms (CRFs) has helped in tracking the course of the HIV pandemic. In Senegal, which is located at the tip of West Africa, CRF02_AG predominates in the general population and Female Sex Workers (FSWs). In contrast, 40% of Men having Sex with Men (MSM) in Senegal are infected with subtype C. In this study we analyzed the geographical origins and introduction dates of HIV-1 C in Senegal in order to better understand the evolutionary history of this subtype, which predominates today in the MSM population Methodology/Principal Findings: We used a combination of phylogenetic analyses and a Bayesian coalescent-based approach, to study the phylogenetic relationships in pol of 56 subtype C isolates from Senegal with 3,025 subtype C strains that were sampled worldwide. Our analysis shows a significantly well supported cluster which contains all subtype C strains that circulate among MSM in Senegal. The MSM cluster and other strains from Senegal are widely dispersed among the different subclusters of African HIV-1 C strains, suggesting multiple introductions of subtype C in Senegal from many different southern and east African countries. More detailed analyses show that HIV-1 C strains from MSM are more closely related to those from southern Africa. The estimated date of the MRCA of subtype C in the MSM population in Senegal is estimated to be in the early 80's. Conclusions/Significance: Our evolutionary reconstructions suggest that multiple subtype C viruses with a common ancestor originating in the early 1970s entered Senegal. There was only one efficient spread in the MSM population, which most likely resulted from a single introduction, underlining the importance of high-risk behavior in spread of viruses

    Search for the decay modes D^0 → e^+e^-, D^0 → μ^+μ^-, and D^0 → e^±μ∓

    Get PDF
    We present searches for the rare decay modes D^0→e^+e^-, D^0→μ^+μ^-, and D^0→e^±μ^∓ in continuum e^+e^-→cc events recorded by the BABAR detector in a data sample that corresponds to an integrated luminosity of 468  fb^(-1). These decays are highly Glashow–Iliopoulos–Maiani suppressed but may be enhanced in several extensions of the standard model. Our observed event yields are consistent with the expected backgrounds. An excess is seen in the D^0→μ^+μ^- channel, although the observed yield is consistent with an upward background fluctuation at the 5% level. Using the Feldman–Cousins method, we set the following 90% confidence level intervals on the branching fractions: B(D^0→e^+e^-)<1.7×10^(-7), B(D^0→μ^+μ^-) within [0.6,8.1]×10^(-7), and B(D^0→e^±μ^∓)<3.3×10^(-7)

    Evidence for an excess of B -> D(*) Tau Nu decays

    Get PDF
    Based on the full BaBar data sample, we report improved measurements of the ratios R(D(*)) = B(B -> D(*) Tau Nu)/B(B -> D(*) l Nu), where l is either e or mu. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure R(D) = 0.440 +- 0.058 +- 0.042 and R(D*) = 0.332 +- 0.024 +- 0.018, which exceed the Standard Model expectations by 2.0 sigma and 2.7 sigma, respectively. Taken together, our results disagree with these expectations at the 3.4 sigma level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model. We also report the observation of the decay B -> D Tau Nu, with a significance of 6.8 sigma.Comment: Expanded section on systematics, text corrections, improved the format of Figure 2 and included the effect of the change of the Tau polarization due to the charged Higg

    Measurement of Lifetime and Decay-Width Difference in B0s -> J/psi phi Decays

    Get PDF
    We measure the mean lifetime, tau=2/(Gamma_L+Gamma_H), and the width difference, DeltaGamma=Gamma_L-Gamma_H, of the light and heavy mass eigenstates of the B0s meson, B0sL and B0sH, in B0s -> J/psi phi decays using 1.7 fb^-1 of data collected with the CDF II detector at the Fermilab Tevatron ppbar collider. Assuming CP conservation, a good approximation for the B0s system in the Standard Model, we obtain DeltaGamma = 0.076^+0.059_-0.063 (stat.) +- 0.006 (syst.) ps^-1 and tau = 1.52 +- 0.04 (stat.) +- 0.02 (syst.) ps, the most precise measurements to date. Our constraints on the weak phase and DeltaGamma are consistent with CP conservation. Dedicated to the memory of our dear friend and colleague, Michael P. Schmid
    • …
    corecore