1,846 research outputs found
Limit Cycles and Conformal Invariance
There is a widely held belief that conformal field theories (CFTs) require
zero beta functions. Nevertheless, the work of Jack and Osborn implies that the
beta functions are not actually the quantites that decide conformality, but
until recently no such behavior had been exhibited. Our recent work has led to
the discovery of CFTs with nonzero beta functions, more precisely CFTs that
live on recurrent trajectories, e.g., limit cycles, of the beta-function vector
field. To demonstrate this we study the S function of Jack and Osborn. We use
Weyl consistency conditions to show that it vanishes at fixed points and agrees
with the generator Q of limit cycles on them. Moreover, we compute S to third
order in perturbation theory, and explicitly verify that it agrees with our
previous determinations of Q. A byproduct of our analysis is that, in
perturbation theory, unitarity and scale invariance imply conformal invariance
in four-dimensional quantum field theories. Finally, we study some properties
of these new, "cyclic" CFTs, and point out that the a-theorem still governs the
asymptotic behavior of renormalization-group flows.Comment: 31 pages, 4 figures. Expanded introduction to make clear that cycles
discussed in this work are not associated with unitary theories that are
scale but not conformally invarian
Limit Cycles in Four Dimensions
We present an example of a limit cycle, i.e., a recurrent flow-line of the
beta-function vector field, in a unitary four-dimensional gauge theory. We thus
prove that beta functions of four-dimensional gauge theories do not produce
gradient flows. The limit cycle is established in perturbation theory with a
three-loop calculation which we describe in detail.Comment: 12 pages, 1 figure. Significant revision of the interpretation of our
result. Improved description of three-loop calculatio
Scale without Conformal Invariance at Three Loops
We carry out a three-loop computation that establishes the existence of scale
without conformal invariance in dimensional regularization with the MS scheme
in d=4-epsilon spacetime dimensions. We also comment on the effects of scheme
changes in theories with many couplings, as well as in theories that live on
non-conformal scale-invariant renormalization group trajectories. Stability
properties of such trajectories are analyzed, revealing both attractive and
repulsive directions in a specific example. We explain how our results are in
accord with those of Jack & Osborn on a c-theorem in d=4 (and d=4-epsilon)
dimensions. Finally, we point out that limit cycles with turning points are
unlike limit cycles with continuous scale invariance.Comment: 21 pages, 3 figures, Erratum adde
On renormalization group flows and the a-theorem in 6d
We study the extension of the approach to the a-theorem of Komargodski and
Schwimmer to quantum field theories in d=6 spacetime dimensions. The dilaton
effective action is obtained up to 6th order in derivatives. The anomaly flow
a_UV - a_IR is the coefficient of the 6-derivative Euler anomaly term in this
action. It then appears at order p^6 in the low energy limit of n-point
scattering amplitudes of the dilaton for n > 3. The detailed structure with the
correct anomaly coefficient is confirmed by direct calculation in two examples:
(i) the case of explicitly broken conformal symmetry is illustrated by the free
massive scalar field, and (ii) the case of spontaneously broken conformal
symmetry is demonstrated by the (2,0) theory on the Coulomb branch. In the
latter example, the dilaton is a dynamical field so 4-derivative terms in the
action also affect n-point amplitudes at order p^6. The calculation in the
(2,0) theory is done by analyzing an M5-brane probe in AdS_7 x S^4.
Given the confirmation in two distinct models, we attempt to use dispersion
relations to prove that the anomaly flow is positive in general. Unfortunately
the 4-point matrix element of the Euler anomaly is proportional to stu and
vanishes for forward scattering. Thus the optical theorem cannot be applied to
show positivity. Instead the anomaly flow is given by a dispersion sum rule in
which the integrand does not have definite sign. It may be possible to base a
proof of the a-theorem on the analyticity and unitarity properties of the
6-point function, but our preliminary study reveals some difficulties.Comment: 41 pages, 5 figure
Multimorbidity and comorbidity in the Dutch population - data from general practices
<p>Abstract</p> <p>Background</p> <p>Multimorbidity is increasingly recognized as a major public health challenge of modern societies. However, knowledge about the size of the population suffering from multimorbidity and the type of multimorbidity is scarce. The objective of this study was to present an overview of the prevalence of multimorbidity and comorbidity of chronic diseases in the Dutch population and to explore disease clustering and common comorbidities.</p> <p>Methods</p> <p>We used 7 years data (2002–2008) of a large Dutch representative network of general practices (212,902 patients). Multimorbidity was defined as having two or more out of 29 chronic diseases. The prevalence of multimorbidity was calculated for the total population and by sex and age group. For 10 prevalent diseases among patients of 55 years and older (N = 52,014) logistic regressions analyses were used to study disease clustering and descriptive analyses to explore common comorbid diseases.</p> <p>Results</p> <p>Multimorbidity of chronic diseases was found among 13% of the Dutch population and in 37% of those older than 55 years. Among patients over 55 years with a specific chronic disease more than two-thirds also had one or more other chronic diseases. Most disease pairs occurred more frequently than would be expected if diseases had been independent. Comorbidity was not limited to specific combinations of diseases; about 70% of those with a disease had one or more extra chronic diseases recorded which were not included in the top five of most common diseases.</p> <p>Conclusion</p> <p>Multimorbidity is common at all ages though increasing with age, with over two-thirds of those with chronic diseases and aged 55 years and older being recorded with multimorbidity. Comorbidity encompassed many different combinations of chronic diseases. Given the ageing population, multimorbidity and its consequences should be taken into account in the organization of care in order to avoid fragmented care, in medical research and healthcare policy.</p
Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis
Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8−/−) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8−/− mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8−/−, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8−/− mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions
Light dark matter and dark force at colliders
Light Dark Matter, GeV, with sizable direct detection rate is an
interesting and less explored scenario. Collider searches can be very powerful,
such as through the channel in which a pair of dark matter particle are
produced in association with a jet. It is a generic possibility that the
mediator of the interaction between DM and the nucleus will also be accessible
at the Tevatron and the LHC. Therefore, collider search of the mediator can
provide a more comprehensive probe of the dark matter and its interactions. In
this article, to demonstrate the complementarity of these two approaches, we
focus on the possibility of the mediator being a new gauge boson, which
is probably the simplest model which allows a large direct detection cross
section for a light dark matter candidate. We combine searches in the
monojet+MET channel and dijet resonance search for the mediator. We find that
for the mass of between 250 GeV and 4 TeV, resonance searches at the
colliders provide stronger constraints on this model than the monojet+MET
searches.Comment: 23 pages and 14 figure
Comments on Holographic Entanglement Entropy and RG Flows
Using holographic entanglement entropy for strip geometry, we construct a
candidate for a c-function in arbitrary dimensions. For holographic theories
dual to Einstein gravity, this c-function is shown to decrease monotonically
along RG flows. A sufficient condition required for this monotonic flow is that
the stress tensor of the matter fields driving the holographic RG flow must
satisfy the null energy condition over the holographic surface used to
calculate the entanglement entropy. In the case where the bulk theory is
described by Gauss-Bonnet gravity, the latter condition alone is not sufficient
to establish the monotonic flow of the c-function. We also observe that for
certain holographic RG flows, the entanglement entropy undergoes a 'phase
transition' as the size of the system grows and as a result, evolution of the
c-function may exhibit a discontinuous drop.Comment: References adde
The a-theorem and conformal symmetry breaking in holographic RG flows
We study holographic models describing an RG flow between two fixed points
driven by a relevant scalar operator. We show how to introduce a spurion field
to restore Weyl invariance and compute the anomalous contribution to the
generating functional in even dimensional theories. We find that the
coefficient of the anomalous term is proportional to the difference of the
conformal anomalies of the UV and IR fixed points, as expected from anomaly
matching arguments in field theory. For any even dimensions the coefficient is
positive as implied by the holographic a-theorem. For flows corresponding to
spontaneous breaking of conformal invariance, we also compute the two-point
functions of the energy-momentum tensor and the scalar operator and identify
the dilaton mode. Surprisingly we find that in the simplest models with just
one scalar field there is no dilaton pole in the two-point function of the
scalar operator but a stronger singularity. We discuss the possible
implications.Comment: 50 pages. v2: minor changes, added references, extended discussion.
v3: we have clarified some of the calculations and assumptions, results
unchanged. v4: published version in JHE
Fermi Gamma-ray Imaging of a Radio Galaxy
The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating
from the giant radio lobes of the radio galaxy Centaurus A. The resolved
gamma-ray image shows the lobes clearly separated from the central active
source. In contrast to all other active galaxies detected so far in high-energy
gamma-rays, the lobe flux constitutes a considerable portion (>1/2) of the
total source emission. The gamma-ray emission from the lobes is interpreted as
inverse Compton scattered relic radiation from the cosmic microwave background
(CMB), with additional contribution at higher energies from the
infrared-to-optical extragalactic background light (EBL). These measurements
provide gamma-ray constraints on the magnetic field and particle energy content
in radio galaxy lobes, and a promising method to probe the cosmic relic photon
fields.Comment: 27 pages, includes Supplementary Online Material; corresponding
authors: C.C. Cheung, Y. Fukazawa, J. Knodlseder, L. Stawar
- …
