27 research outputs found
Simulation of Postsynaptic Glutamate Receptors Reveals Critical Features of Glutamatergic Transmission
Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following high-frequency stimulation. They also provide a new tool to analyze the interactions between metabotropic and ionotropic glutamate receptors
Altered Expression of Human Mitochondrial Branched Chain Aminotransferase in Dementia with Lewy Bodies and Vascular Dementia
© 2016, The Author(s). Cytosolic and mitochondrial human branched chain aminotransferase (hBCATc and hBCATm, respectively) play an integral role in brain glutamate metabolism. Regional increased levels of hBCATc in the CA1 and CA4 region of Alzheimer’s disease (AD) brain together with increased levels of hBCATm in frontal and temporal cortex of AD brains, suggest a role for these proteins in glutamate excitotoxicity. Glutamate toxicity is a key pathogenic feature of several neurological disorders including epilepsy associated dementia, AD, vascular dementia (VaD) and dementia with Lewy bodies (DLB). To further understand if these increases are specific to AD, the expression profiles of hBCATc and hBCATm were examined in other forms of dementia including DLB and VaD. Similar to AD, levels of hBCATm were significantly increased in the frontal and temporal cortex of VaD cases and in frontal cortex of DLB cases compared to controls, however there were no observed differences in hBCATc between groups in these areas. Moreover, multiple forms of hBCATm were observed that were particular to the disease state relative to matched controls. Real-time PCR revealed similar expression of hBCATm mRNA in frontal and temporal cortex for all cohort comparisons, whereas hBCATc mRNA expression was significantly increased in VaD cases compared to controls. Collectively our results suggest that hBCATm protein expression is significantly increased in the brains of DLB and VaD cases, similar to those reported in AD brain. These findings indicate a more global response to altered glutamate metabolism and suggest common metabolic responses that might reflect shared neurodegenerative mechanisms across several forms of dementia
Alterations in metabolic pathways and networks in Alzheimer's disease
10.1038/tp.2013.18Translational Psychiatry3
Impact of antibiotic resistance on outcomes of neutropenic cancer patients with Pseudomonas aeruginosa bacteraemia (IRONIC study) : Study protocol of a retrospective multicentre international study
Introduction Pseudomonas aeruginosa (PA) has historically been one of the major causes of severe sepsis and death among neutropenic cancer patients. There has been a recent increase of multidrug-resistant PA (MDRPA) isolates that may determine a worse prognosis, particularly in immunosuppressed patients. The aim of this study is to establish the impact of antibiotic resistance on the outcome of neutropenic onco-haematological patients with PA bacteraemia, and to identify the risk factors for MDRPA bacteraemia and mortality. Methods and analysis This is a retrospective, observational, multicentre, international study. All episodes of PA bacteraemia occurring in neutropenic onco-haematological patients followed up at the participating centres from 1 January 2006 to 31 May 2018 will be retrospectively reviewed. The primary end point will be overall case-fatality rate within 30 days of onset of PA bacteraemia. The secondary end points will be to describe the following: the incidence and risk factors for multidrug-resistant and extremely drug-resistant PA bacteraemia (by comparing the episodes due to susceptible PA with those produced by MDRPA), the efficacy of ceftolozane/tazobactam, the rates of persistent bacteraemia and bacteraemia relapse and the risk factors for very early (48 hours), early (7 days) and overall (30 days) case-fatality rates. Ethics and dissemination The Clinical Research Ethics Committee of Bellvitge University Hospital approved the protocol of the study at the primary site. To protect personal privacy, identifying information of each patient in the electronic database will be encrypted. The processing of the patients' personal data collected in the study will comply with the Spanish Data Protection Act of 1998 and with the European Directive on the privacy of data. All data collected, stored and processed will be anonymised. Results will be reported at conferences and in peer-reviewed publications
Early synaptic deficits in the APP/PS1 mouse model of Alzheimer’s disease involve neuronal adenosine A2A receptors
Synaptic plasticity in the autoassociative network of recurrent connections among hippocampal CA3 pyramidal cells is thought to enable the storage of episodic memory. Impaired episodic memory is an early manifestation of cognitive deficits in Alzheimer's disease (AD). In the APP/PS1 mouse model of AD amyloidosis, we show that associative long-term synaptic potentiation (LTP) is abolished in CA3 pyramidal cells at an early stage. This is caused by activation of upregulated neuronal adenosine A(2A) receptors (A(2A)R) rather than by dysregulation of NMDAR signalling or altered dendritic spine morphology. Neutralization of A(2A)R by acute pharmacological inhibition, or downregulation driven by shRNA interference in a single postsynaptic neuron restore associative CA3 LTP. Accordingly, treatment with A(2A)R antagonists reverts one-trial memory deficits. These results provide mechanistic support to encourage testing the therapeutic efficacy of A(2A)R antagonists in early AD patients