237 research outputs found

    Detection and quantification of antibody to SARS CoV 2 receptor binding domain provides enhanced sensitivity, specificity and utility

    Get PDF
    Accurate and sensitive detection of antibody to SARS-CoV-2 remains an essential component of the pandemic response. Measuring antibody that predicts neutralising activity and the vaccine response is an absolute requirement for laboratory-based confirmatory and reference activity. The viral receptor binding domain (RBD) constitutes the prime target antigen for neutralising antibody. A double antigen binding assay (DABA), providing the most sensitive format has been exploited in a novel hybrid manner employing a solid-phase S1 preferentially presenting RBD, coupled with a labelled RBD conjugate, used in a two-step sequential assay for detection and measurement of antibody to RBD (anti-RBD). This class and species neutral assay showed a specificity of 100% on 825 pre COVID-19 samples and a potential sensitivity of 99.6% on 276 recovery samples, predicting quantitatively the presence of neutralising antibody determined by pseudo-type neutralisation and by plaque reduction. Anti-RBD is also measurable in ferrets immunised with ChadOx1 nCoV-19 vaccine and in humans immunised with both AstraZeneca and Pfizer vaccines. This assay detects anti-RBD at presentation with illness, demonstrates its elevation with disease severity, its sequel to asymptomatic infection and its persistence after the loss of antibody to the nucleoprotein (anti-NP). It also provides serological confirmation of prior infection and offers a secure measure for seroprevalence and studies of vaccine immunisation in human and animal populations. The hybrid DABA also displays the attributes necessary for the detection and quantification of anti-RBD to be used in clinical practice. An absence of detectable anti-RBD by this assay predicates the need for passive immune prophylaxis in at-risk patients

    Aggressive fibromatosis of the head and neck: a new classification based on a literature review over 40 years (1968-2008)

    Full text link
    BACKGROUND: Fibromatosis is an aggressive fibrous tumor of unknown etiology that is, in some cases, lethal. Until now, there has been no particular classification for the head and neck. Therefore, the aim of the present study was to review the current literature in order to propose a new classification for future studies. METHODS: An evidence-based literature review was conducted from the last 40 years regarding aggressive fibromatosis in the head and neck. Studies that summarized patients' data without including individual data were excluded. RESULTS: Between 1968 and 2008, 179 cases with aggressive fibromatosis of the head and neck were published. The male to female ratio was 91 to 82 with a mean age of 16.87 years, and 57.32% of the described cases that involved the head and neck were found in patients under 11 years. The most common localization was the mandible, followed by the neck. All together, 143 patients were followed up, and in 43 (30.07%), a recurrence was seen. CONCLUSION: No clear prognostic factors for recurrence (age, sex, or localization) were observed. A new classification with regard to hormone receptors and bone involvement could improve the understanding of risk factors and thereby assist in future studies

    Resolving the Trophic Relations of Cryptic Species: An Example Using Stable Isotope Analysis of Dolphin Teeth

    Get PDF
    Understanding the foraging ecology and diet of animals can play a crucial role in conservation of a species. This is particularly true where species are cryptic and coexist in environments where observing feeding behaviour directly is difficult. Here we present the first information on the foraging ecology of a recently identified species of dolphin (Southern Australian bottlenose dolphin (SABD)) and comparisons to the common bottlenose dolphin (CBD) in Victoria, Australia, using stable isotope analysis of teeth. Stable isotope signatures differed significantly between SABD and CBD for both δ13C (−14.4‰ vs. −15.5‰ respectively) and δ15N (15.9‰ vs. 15.0‰ respectively), suggesting that the two species forage in different areas and consume different prey. This finding supports genetic and morphological data indicating that SABD are distinct from CBD. In Victoria, the SABD is divided into two distinct populations, one in the large drowned river system of Port Phillip Bay and the other in a series of coastal lakes and lagoons called the Gippsland Lakes. Within the SABD species, population differences were apparent. The Port Phillip Bay population displayed a significantly higher δ15N than the Gippsland Lakes population (17.0‰ vs. 15.5‰), suggesting that the Port Phillip Bay population may feed at a higher trophic level - a result which is supported by analysis of local food chains. Important future work is required to further understand the foraging ecology and diet of this newly described, endemic, and potentially endangered species of dolphin

    A review of the benefits and drawbacks to virtual field guides in today’s Geoscience higher education environment

    Get PDF
    Virtual Field Guides are a way for educators to tackle the growing issue of funding pressures in areas of higher education, such as geography. Virtual Field Guides are however underutilised and can offer students a different way of learning. Virtual Field Guides have many benefits to students, such as being more inclusive, building student skills and confidence in a controlled environment pre fieldtrip and can increase engagement in the topic studied. There are also benefits to the educator, such as reduced cost, more efficient students on fieldwork tasks and the ability to tailor and update their field guides to suit their needs. However there are drawbacks in the challenge of creation and their outcome as educational standalone tools. This paper reviews the literature around the benefits and draw backs to the creation and incorporation of virtual field guides in geoscience education. © 2017, The Author(s)

    The Use of Carcasses for the Analysis of Cetacean Population Genetic Structure: A Comparative Study in Two Dolphin Species

    Get PDF
    Advances in molecular techniques have enabled the study of genetic diversity and population structure in many different contexts. Studies that assess the genetic structure of cetacean populations often use biopsy samples from free-ranging individuals and tissue samples from stranded animals or individuals that became entangled in fishery or aquaculture equipment. This leads to the question of how representative the location of a stranded or entangled animal is with respect to its natural range, and whether similar results would be obtained when comparing carcass samples with samples from free-ranging individuals in studies of population structure. Here we use tissue samples from carcasses of dolphins that stranded or died as a result of bycatch in South Australia to investigate spatial population structure in two species: coastal bottlenose (Tursiops sp.) and short-beaked common dolphins (Delphinus delphis). We compare these results with those previously obtained from biopsy sampled free-ranging dolphins in the same area to test whether carcass samples yield similar patterns of genetic variability and population structure. Data from dolphin carcasses were gathered using seven microsatellite markers and a fragment of the mitochondrial DNA control region. Analyses based on carcass samples alone failed to detect genetic structure in Tursiops sp., a species previously shown to exhibit restricted dispersal and moderate genetic differentiation across a small spatial scale in this region. However, genetic structure was correctly inferred in D. delphis, a species previously shown to have reduced genetic structure over a similar geographic area. We propose that in the absence of corroborating data, and when population structure is assessed over relatively small spatial scales, the sole use of carcasses may lead to an underestimate of genetic differentiation. This can lead to a failure in identifying management units for conservation. Therefore, this risk should be carefully assessed when planning population genetic studies of cetaceans

    The YEATS domain of Taf14 in Saccharomyces cerevisiae has a negative impact on cell growth

    Get PDF
    The role of a highly conserved YEATS protein motif is explored in the context of the Taf14 protein of Saccharomyces cerevisiae. In S. cerevisiae, Taf14 is a protein physically associated with many critical multisubunit complexes including the general transcription factors TFIID and TFIIF, the chromatin remodeling complexes SWI/SNF, Ino80 and RSC, Mediator and the histone modification enzyme NuA3. Taf14 is a member of the YEATS superfamily, conserved from bacteria to eukaryotes and thought to have a transcription stimulatory activity. However, besides its ubiquitous presence and its links with transcription, little is known about Taf14’s role in the nucleus. We use structure–function and mutational analysis to study the function of Taf14 and its well conserved N-terminal YEATS domain. We show here that the YEATS domain is not necessary for Taf14’s association with these transcription and chromatin remodeling complexes, and that its presence in these complexes is dependent only on its C-terminal domain. Our results also indicate that Taf14’s YEATS domain is not necessary for complementing the synthetic lethality between TAF14 and the general transcription factor TFIIS (encoded by DST1). Furthermore, we present evidence that the YEATS domain of Taf14 has a negative impact on cell growth: its absence enables cells to grow better than wild-type cells under stress conditions, like the microtubule destabilizing drug benomyl. Moreover, cells expressing solely the YEATS domain grow worser than cells expressing any other Taf14 construct tested, including the deletion mutant. Thus, this highly conserved domain should be considered part of a negative regulatory loop in cell growth

    Heat Shock Proteins and Amateur Chaperones in Amyloid-Beta Accumulation and Clearance in Alzheimer’s Disease

    Get PDF
    The pathologic lesions of Alzheimer’s disease (AD) are characterized by accumulation of protein aggregates consisting of intracellular or extracellular misfolded proteins. The amyloid-β (Aβ) protein accumulates extracellularly in senile plaques and cerebral amyloid angiopathy, whereas the hyperphosphorylated tau protein accumulates intracellularly as neurofibrillary tangles. “Professional chaperones”, such as the heat shock protein family, have a function in the prevention of protein misfolding and subsequent aggregation. “Amateur” chaperones, such as apolipoproteins and heparan sulfate proteoglycans, bind amyloidogenic proteins and may affect their aggregation process. Professional and amateur chaperones not only colocalize with the pathological lesions of AD, but may also be involved in conformational changes of Aβ, and in the clearance of Aβ from the brain via phagocytosis or active transport across the blood–brain barrier. Thus, both professional and amateur chaperones may be involved in the aggregation, accumulation, persistence, and clearance of Aβ and tau and in other Aβ-associated reactions such as inflammation associated with AD lesions, and may, therefore, serve as potential targets for therapeutic intervention
    corecore