37 research outputs found
Decision-Directed Channel Estimation Implementation for Spectral Efficiency Improvement in Mobile MIMO-OFDM
Channel estimation algorithms and their implementations
for mobile receivers are considered in this paper.
The 3GPP long term evolution (LTE) based pilot structure
is used as a benchmark in a multiple-input multiple-output
(MIMO) orthogonal frequency division multiplexing
(OFDM) receiver. The decision directed (DD) space alternating
generalized expectation-maximization (SAGE)
algorithm is used to improve the performance from that of
the pilot symbol based least-squares (LS) channel estimator.
The performance is improved with high user velocities,
where the pilot symbol density is not sufficient. Minimum
mean square error (MMSE) filtering is also used
in estimating the channel in between pilot symbols. The
pilot overhead can be reduced to a third of the LTE pilot overhead with DD channel estimation, obtaining a ten percent
increase in data throughput. Complexity reduction and
latency issues are considered in the architecture design.
The pilot based LS, MMSE and the SAGE channel estimators
are implemented with a high level synthesis tool,
synthesized with the UMC 0.18 μm CMOS technology
and the performance-complexity trade-offs are studied. The
MMSE estimator improves the performance from the simple
LS estimator with LTE pilot structure and has low power
consumption. The SAGE estimator has high power consumption
but can be used with reduced pilot density to
increase the data rate.National Science FoundationTekesElektrobitRenesas Mobile EuropeAcademy of FinlandNokia Siemens NetworksXilin
North American Wild Relatives of Grain Crops
The wild-growing relatives of the grain crops are useful for long-term worldwide crop improvement research. There are neglected examples that should be accessioned as living seeds in gene banks. Some of the grain crops, amaranth, barnyard millet, proso millet, quinoa, and foxtail millet, have understudied unique and potentially useful crop wild relatives in North America. Other grain crops, barley, buckwheat, and oats, have fewer relatives in North America that are mostly weeds from other continents with more diverse crop wild relatives. The expanding abilities of genomic science are a reason to accession the wild species since there are improved ways to study evolution within genera and make use of wide gene pools. Rare wild species, especially quinoa relatives in North American, should be acquired by gene banks in cooperation with biologists that already study and conserve at-risk plant populations. Many of the grain crop wild relatives are weeds that have evolved herbicide resistance that could be used in breeding new herbicide-resistant cultivars, so well-documented examples should be accessioned and also vouchered in gene banks
Efficient Lookup Table-Based Adaptive Baseband Predistortion Architecture for Memoryless Nonlinearity
Digital predistortion is an effective means to compensate for the nonlinear effects of a memoryless system. In case of a cellular transmitter, a digital baseband predistorter can mitigate the undesirable nonlinear effects along the signal chain, particularly the nonlinear impairments in the radiofrequency (RF) amplifiers. To be practically feasible, the implementation complexity of the predistorter must be minimized so that it becomes a cost-effective solution for the resource-limited wireless handset. This paper proposes optimizations that facilitate the design of a low-cost high-performance adaptive digital baseband predistorter for memoryless systems. A comparative performance analysis of the amplitude and power lookup table (LUT) indexing schemes is presented. An optimized low-complexity amplitude approximation and its hardware synthesis results are also studied. An efficient LUT predistorter training algorithm that combines the fast convergence speed of the normalized least mean squares (NLMSs) with a small hardware footprint is proposed. Results of fixed-point simulations based on the measured nonlinear characteristics of an RF amplifier are presented
Estimation and Direct Equalization of Doubly Selective Channels
We propose channel estimation and direct equalization techniques for transmission over doubly selective channels. The doubly selective channel is approximated using the basis expansion model (BEM). Linear and decision feedback equalizers implemented by time-varying finite impulse response (FIR) filters may then be used to equalize the doubly selective channel, where the time-varying FIR filters are designed according to the BEM. In this sense, the equalizer BEM coefficients are obtained either based on channel estimation or directly. The proposed channel estimation and direct equalization techniques range from pilot-symbol-assisted-modulation- (PSAM-) based techniques to blind and semiblind techniques. In PSAM techniques, pilot symbols are utilized to estimate the channel or directly obtain the equalizer coefficients. The training overhead can be completely eliminated by using blind techniques or reduced by combining training-based techniques with blind techniques resulting in semiblind techniques. Numerical results are conducted to verify the different proposed channel estimation and direct equalization techniques.Electrical Engineering, Mathematics and Computer Scienc
Genetic Diversity and Population Structure of Acacia senegal (L) Willd. in Kenya
The level of genetic diversity and population structure of Acacia senegal variety kerensis in Kenya was examined using seven polymorphic nuclear microsatellite loci and two chloroplast microsatellite loci. In both chloroplast and nuclear datasets, high levels of genetic diversity were found within all populations and genetic differentiation among populations was low, indicating extensive gene flow. Analysis of population structure provided support for the presence of two groups of populations, although all individuals had mixed ancestry. Groups reflected the influence of geography on gene flow, with one representing Rift Valley populations whilst the other represented populations from Eastern Kenya. The similarities between estimates derived from nuclear and chloroplast data suggest highly effective gene dispersal by both pollen and seed in this species, although population structure appears to have been influenced by distributional changes in the past. The few contrasts between the spatial patterns for nuclear and chloroplast data provided additional support for the idea that, having fragmented in the past, groups are now thoroughly mixed as a result of extensive gene flow. For the purposes of conservation and in situ management of genetic resources, sampling could target a few, large populations ideally distributed among the spatial groups identified. This should ensure the majority of extant variation is preserved, and facilitate the investigation of variation in important phenotypic traits and development of breeding populations
Orthogonal space-Time block codes in vehicular environments: Optimum receiver design and performance analysis
10.1155/2009/283060Eurasip Journal on Wireless Communications and Networking2009