677 research outputs found
Ultra-short echo time cardiovascular magnetic resonance of atherosclerotic carotid plaque.
BACKGROUND: Multi-contrast weighted cardiovascular magnetic resonance (CMR) allows detailed plaque characterisation and assessment of plaque vulnerability. The aim of this preliminary study was to show the potential of Ultra-short Echo Time (UTE) subtraction MR in detecting calcification. METHODS: 14 ex-vivo human carotid arteries were scanned using CMR and CT, prior to histological slide preparation. Two images were acquired using a double-echo 3D UTE pulse, one with a long TE and the second with an ultra-short TE, with the same TR. An UTE subtraction (DeltaUTE) image containing only ultra-short T2 (and T2*) signals was obtained by post-processing subtraction of the 2 UTE images. The DeltaUTE image was compared to the conventional 3D T1-weighted sequence and CT scan of the carotid arteries.
RESULTS: In atheromatous carotid arteries, there was a 71% agreement between the high signal intensity areas on DeltaUTE images and CT scan. The same areas were represented as low signal intensity on T1W and areas of void on histology, indicating focal calcification. However, in 15% of all the scans there were some incongruent regions of high intensity on DeltaUTE that did not correspond with a high intensity signal on CT, and histology confirmed the absence of calcification.
CONCLUSIONS: We have demonstrated that the UTE sequence has potential to identify calcified plaque. Further work is needed to fully understand the UTE findings
Recommended from our members
Redox Regulation of Cardiac ASK1 (Apoptosis Signal-Regulating Kinase 1) Controls p38-MAPK (Mitogen-Activated Protein Kinase) and Orchestrates Cardiac Remodeling to Hypertension.
Systemic hypertension increases cardiac workload causing cardiomyocyte hypertrophy and increased cardiac fibrosis. An underlying feature is increased production of reactive oxygen species. Redox-sensitive ASK1 (apoptosis signal-regulating kinase 1) activates stress-regulated protein kinases (p38-MAPK [mitogen-activated protein kinases] and JNKs [c-Jun N-terminal kinases]) and promotes fibrosis in various tissues. Here, we determined the specificity of ASK1 signaling in the heart, with the hypothesis that ASK1 inhibitors may be used to manage fibrosis in hypertensive heart disease. Using immunoblotting, we established that moderate levels of H2O2 activate ASK1 in neonatal rat cardiomyocytes and perfused rat hearts. ASK1 was activated during ischemia in adult rat hearts, but not on reperfusion, consistent with activation by moderate (not high) reactive oxygen species levels. In contrast, IL (interleukin)-1β activated an alternative kinase, TAK1 (transforming growth factor-activated kinase 1). ASK1 was not activated by IL1β in cardiomyocytes and activation in perfused hearts was due to increased reactive oxygen species. Selonsertib (ASK1 inhibitor) prevented activation of p38-MAPKs (but not JNKs) by oxidative stresses in cultured cardiomyocytes and perfused hearts. In vivo (C57Bl/6J mice with osmotic minipumps for drug delivery), selonsertib (4 mg/[kg·d]) alone did not affect cardiac function/dimensions (assessed by echocardiography). However, it suppressed hypertension-induced cardiac hypertrophy resulting from angiotensin II (0.8 mg/[kg·d], 7d), with inhibition of Nppa/Nppb mRNA upregulation, reduced cardiomyocyte hypertrophy and, notably, significant reductions in interstitial and perivascular fibrosis. Our data identify a specific reactive oxygen species→ASK1→p38-MAPK pathway in the heart and establish that ASK1 inhibitors protect the heart from hypertension-induced cardiac remodeling. Thus, targeting the ASK1→p38-MAPK nexus has potential therapeutic viability as a treatment for hypertensive heart disease
Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation
The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Deletion of a gene encoding a putative deacetylase, Agd3, leads to defects in GAG deacetylation, biofilm formation, and virulence. Here, we show that Agd3 deacetylates GAG in a metal-dependent manner, and is the founding member of carbohydrate esterase family CE18. The active site is formed by four catalytic motifs that are essential for activity. The structure of Agd3 includes an elongated substrate-binding cleft formed by a carbohydrate binding module (CBM) that is the founding member of CBM family 87. Agd3 homologues are encoded in previously unidentified putative bacterial exopolysaccharide biosynthetic operons and in other fungal genomes. The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Here, the authors study an A. fumigatus enzyme that deacetylates GAG in a metal-dependent manner and constitutes a founding member of a new carbohydrate esterase family.Bio-organic Synthesi
Recommended from our members
The FIELDS Instrument Suite for Solar Probe Plus: Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients.
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products
Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells
Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins
Enhancing students’ motivation to learn software engineering programming techniques: a collaborative and social interaction approach
To motivate students to study advanced programming techniques, including the use of architectural styles such as the model–view–controller pattern, we have con-ducted action research upon a project based-learning approach. In addition to collabo-ration, the approach includes students’ searching and analysis of scientific documents and their involvement in communities of practice outside academia. In this paper, we report the findings of second action research cycle, which took place throughout the fourth semester of a six-semester program. As with the previous cycle during the pre-vious academic year, students did not satisfactorily achieve expected learning out-comes. More groups completed the assigned activities, but results continue to reflect poor engagement in the communities of practice and very low performance in other learning tasks. From the collected data we have identified new approaches and recom-mendations for subsequent research.Fundação para a Ciência e Tecnologia (FCT), Portugal, for Ph.D. Grants SFRH/BD/91309/2012 and SFRH/BD/87815/201
Status, trends and future dynamics of biodiversity and ecosystems underpinning nature's contributions to people
Biodiversity at the species and ecosystem levels is currently under multiple threats almost everywhere in the Asia-Pacific region, and in many areas the situation is now critical (well established). Of the various ecosystems, lowland evergreen forests, alpine ecosystems, limestone karsts, inland wetlands, and estuarine and coastal habitats are most threatened (well established). Genetic diversity within species, both wild and domestic, is also decreasing in many cases as a result of decreasing ranges (established but incomplete). In several countries there has been a small increase in the forest cover which is mostly attributed to monoculture forestry plantations and enabling policies of the governments. Forest fires associated with rapid loss of forest cover is leading to enormous environmental and socio-economic loss (well established) {3.2.1; 3.2.2; 3.2.3; 3.2.4; 3.2.5; 3.3.1}.
There has been a steady decline in the populations of large vertebrates due to poaching and illegal trade in wildlife parts and products in the Asia-Pacific region (well established). As a result, most of these species now survive only in the best-managed protected areas (well established). Widespread loss of large vertebrates has had a measureable impact on several forest functions and services, including seed dispersal (established but incomplete). Australia has the highest rate of mammal extinction (>10 per cent) of any continent globally. Bird extinctions on individual Pacific islands range from 15.4 per cent to 87.5 per cent for those with good fossil records, and these extinctions have resulted in the loss of many ecological functions previously performed by birds (well established). Besides wildlife, there is a massive regional trade in timber, traditional medicines and other products (well established). Without adequate protection, remediation and proper policies, the current decline in biodiversity and nature's contributions to people on land, in freshwaters, and in the sea will threaten the quality of life of future generations in the Asia-Pacific region {3.2.1.1; 3.2.1.2; 3.2.1.4; 3.2.1.7; 3.2.2.1; 3.3.1}
With the current rate of human population growth, expansion of urban industrial environments, transformation of agriculture in favour of high yielding varieties, transforming forests to uniform plantations of oil palm, rubber or timber trees, the biodiversity and nature's contributions to people in the Asia-Pacific region are likely to be adversely affected in the coming decades (well established). It is predicted that most of the biodiversity in the next few decades may be confined to protected areas or in places where the local communities have taken the lead in local level conservation in lieu of economic incentives and equitable compensation by the stake-holders. Unprecedented increase in human population of the Asia-Pacific region has stressed the fragile ecosystems to their limits; while arable cropping has been extended to sites which were not entirely suitable for it, resulting in soil degradation and erosion (well established) {3.2.1.1; 3.2.1.2; 3.2.1.5; 3.2.2.2; 3.2.2.4; 3.3; 3.3.1; 3.3.6; 3.4}.
Freshwater ecosystems in the Asia-Pacific region support more than 28 per cent of aquatic and semi-aquatic species but nearly 37 per cent of these species are threatened due to anthropogenic and climatic drivers (well established). Cumulative impacts of global warming and damming of rivers in some of the river basins will have significant negative impacts on fish production and environmental flows (well established). Likewise, degradation of wetlands has had severe negative impacts on migratory waterfowl, fish production and local livelihoods (well established). However, there are scientific data gaps on the current status of biodiversity and nature's contributions to people in most of the river basins, inland wetlands and peatlands of the region {3.2.2.1; 3.2.2.2; 3.2.2.3; 3.2.2.4}.
Coastal and marine habitats are likewise threatened due to commercial aquaculture, overfishing, and pollution affecting biodiversity and nature's contributions to people (well established). Detailed analyses of fisheries production in the region have shown severe decline in recent decades. It is projected that if unsustainable fishing practices continue, there could be no exploitable stocks of fish by as early as 2048. This could lead to trophic cascades and collapse of
marine ecosystems (established but incomplete). Loss of seagrass beds which forms main diet of several threatened species such as dugong is a major concern (well established). There is a need to conduct systematic and region-wide assessment of fisheries stocks and coastal habitat in the region to aid conservation, management and restoration. {3.1.3.1; 3.2.3.3; 3.2.3.6; 3.2.4.6; 3.4}.
Mangrove ecosystems in the Asia-Pacific region are most diverse in the world. They support a rich biodiversity and provide a range of provisioning, regulating and supporting services, which are crucial for the livelihood of local communities (well established). Both mangrove and intertidal habitats form a buffer from siltation for offshore coral reefs protection hence affecting productivity of reefs including seagrass. However, up to 75 per cent of the mangroves have been degraded or converted in recent decades (well established). The conversion of mangroves to aquaculture, rice, oil palm, and other land-use changes is leading to the loss of the buffer between sea and land which can reduce the impact of natural disasters such as cyclones and tsunamis. It is projected that rise in sea level due to global warming would pose the biggest threat to mangroves, thereby affecting nature's contributions to people especially in Bangladesh, Philippines, New Zealand, Viet Nam and China (well established) {3.2.3.1; 3.2.3.2; 3.3.4}.
There has been a steady increase in the number, abundance and impacts of invasive alien species in the Asia-Pacific region, negatively affecting native biodiversity, ecosystem functioning and socio-cultural environments (well established). The total annual loss caused by invasive alien species has been estimated at US9B in Australia. Costs to agriculture due to invasive alien species are likewise immense in the region {3.2.1.1; 3.2.1.2; 3.2.1.4; 3.2.1.5; 3.2.1.6; 3.2.1.7; 3.2.2.1; 3.2.2.2; 3.2.2.3; 3.2.3.6; 3.3.5}.
There has been a nearly 30 per cent decline in biocultural diversity in the Asia-Pacific region since the 1970s (well established). Decline of linguistic diversity has been catastrophic in the indigenous Australian and Trans-New Guinean families, as a result of a shifting away from small indigenous languages towards larger, national or regional languages (well established). Linguistic and biological diversity often coincide in the Asia-Pacific region and parallel strategies need to be developed for their conservation. National conservation priorities should take into consideration the bioculturally rich areas that are facing great threats {3.2.5; 3.2.5.2; 3.2.5.4; 3.4}.
Protected Area coverage in the Asia-Pacific region has increased substantially since last three decades. Despite this progress, however, at least 75 per cent of Key Biodiversity Areas remain unprotected, suggesting that the region is not on track to conserve areas of particular importance for biodiversity, as called for under Aichi Target 11 (well established). Oceania has the highest overall Protected Area coverage in the region. North-East Asia has the highest proportion of Key Biodiversity Areas covered by Protected Areas, but only 1 per cent of its marine area is protected (well established) {3.2.5.6; 3.2.6; 3.2.6.1}.
The Asia-Pacific region has high levels of endemism, and some 25 per cent of the region’s endemic species are facing high extinction risks as per the IUCN Red List. Endemic species in some subregions face an extinction risk as high as 46 per cent of endemic species threatened in South Asia (well established). South-East Asia has the greatest number of threatened species and the fastest increases in extinction risk (Red List Index) in the Asia-Pacific region. North Asian endemic species extinction risk is also higher than the regional average; the high percentage of Data Deficient species (36 per cent) indicates that more research and conservation action are needed for endemic species in this subregion (well established) {3.2.1; 3.2.2; 3.2.6.2; 3.3.4}.
Some aspects of biodiversity have recently started to recover in several countries in the Asia-Pacific region (established but incomplete). This recovery has resulted from various changes, including population concentration in cities, increased agricultural production per unit area, increasing conservation awareness among citizens, and the enabling policies of the governments. Future trends of biodiversity in the Asia-Pacific region will largely depend on whether other countries will follow this recovering trajectory by stabilizing land/sea use change, manage their natural resources sustainably, and cooperating with each other in meeting the Aichi Targets and the Sustainable Development Goals {3.2.1.5; 3.2.3.5; 3.3.1; 3.3.3; 3.3.6}.
Given that the scientific information on the status and trends of biodiversity and nature's contributions to people is not available uniformly across all ecosystems and habitats in the region, the national governments are encouraged to initiate systematic documentation and monitoring of health of ecosystems and ecosystem flows (established but incomplete). Saving terrestrial fauna especially big mammals and other fauna that require large roaming areas such as Orangutans, proboscis monkey, hornbills, tigers, Sumatran rhinoceros, gaurs and Asian elephants can be done by connecting large tracts of forests with wildlife corridors or through rehabilitation projects; the same goes for coastal and marine, freshwater and other ecosystems in the region {3.2.1.1; 3.2.2.4; 3.3.4; 3.4}
Recommended from our members
The anti-cancer drug dabrafenib is not cardiotoxic and inhibits cardiac remodelling and fibrosis in a murine model of hypertension.
Raf kinases signal via extracellular signal-regulated kinases 1/2 (ERK1/2) to drive cell division. Since activating mutations in BRAF (B-Raf proto-oncogene, serine/threonine kinase) are highly oncogenic, BRAF inhibitors including dabrafenib have been developed for cancer. Inhibitors of ERK1/2 signalling used for cancer are cardiotoxic in some patients, raising the question of whether dabrafenib is cardiotoxic. In the heart, ERK1/2 signalling promotes not only cardiomyocyte hypertrophy and is cardioprotective but also promotes fibrosis. Our hypothesis is that ERK1/2 signalling is not required in a non-stressed heart but is required for cardiac remodelling. Thus, dabrafenib may affect the heart in the context of, for example, hypertension. In experiments with cardiomyocytes, cardiac fibroblasts and perfused rat hearts, dabrafenib inhibited ERK1/2 signalling. We assessed the effects of dabrafenib (3 mg/kg/d) on male C57BL/6J mouse hearts in vivo. Dabrafenib alone had no overt effects on cardiac function/dimensions (assessed by echocardiography) or cardiac architecture. In mice treated with 0.8 mg/kg/d angiotensin II (AngII) to induce hypertension, dabrafenib inhibited ERK1/2 signalling and suppressed cardiac hypertrophy in both acute (up to 7 d) and chronic (28 d) settings, preserving ejection fraction. At the cellular level, dabrafenib inhibited AngII-induced cardiomyocyte hypertrophy, reduced expression of hypertrophic gene markers and almost completely eliminated the increase in cardiac fibrosis both in interstitial and perivascular regions. Dabrafenib is not overtly cardiotoxic. Moreover, it inhibits maladaptive hypertrophy resulting from AngII-induced hypertension. Thus, Raf is a potential therapeutic target for hypertensive heart disease and drugs such as dabrafenib, developed for cancer, may be used for this purpose
Measuring changes in Schlemm’s canal and trabecular meshwork in different accommodation states in myopia children: an observational study
Abstract
Purpose: Studies were designed to evaluate changes in the size of the Schlemm's Canal (SC) and trabecular meshwork(TM) during accommodation stimuli and cycloplegia states in myopic children.
Methods: 34 children were enrolled. A -6D accommodation stimulus was achieved by looking at an optotype through a mirror. Cycloplegia state was induced with 1% tropicamide. Two states were confirmed by measuring the central lens thickness(CLT), the anterior chamber depth and the pupil diameter. The size of the Schlemm's Canal (SC) and Trabecular Meshwork(TM) was measured using swept-source optical coherence tomography. And the associations between the change of the SC and the CLT were analyzed.
Results: When compared with the relaxation state, under -6D accommodation stimuli, the size of SC increased significantly: the SC area (SCA) amplified from 6371±2517μm2 to 7824±2727 μm2; the SC length (SCL) from 249±10 μm to 295±12 μm, and SC width (SCW) from 27±9 μm to 31±8 μm. Under cycloplegia state, the SCA reduced to 5009±2028 μm2; the SCL to 212±μm and the SCW to 22±5 μm. In addition, the changed areas of SCA (r=0. 35; P=0.0007), SCL (r=0. 251; P=0.0172), and SCW (r=0. 253; P=0.016) were significantly correlated with the change in CLT. However, the size of TM did not change substantially when compared with the relaxation state. Only the TM length (TML) increased from 562±45μm to 587±47μm after -6D accommodation stimulus.
Conclusion: SC size enlarges after -6D accommodation stimuli and shrinks under cycloplegia. However, for TM, only the TM length increase under accommodation stimulus state.
KEYWORDS: Schlemm’s Canal, Trabecular Meshwork, accommodatio
- …