83 research outputs found

    Efferent Control of the Electrical and Mechanical Properties of Hair Cells in the Bullfrog's Sacculus

    Get PDF
    Background: Hair cells in the auditory, vestibular, and lateral-line systems respond to mechanical stimulation and transmit information to afferent nerve fibers. The sensitivity of mechanoelectrical transduction is modulated by the efferent pathway, whose activity usually reduces the responsiveness of hair cells. The basis of this effect remains unknown. Methodology and Principal Findings: We employed immunocytological, electrophysiological, and micromechanical approaches to characterize the anatomy of efferent innervation and the effect of efferent activity on the electrical and mechanical properties of hair cells in the bullfrog’s sacculus. We found that efferent fibers form extensive synaptic terminals on all macular and extramacular hair cells. Macular hair cells expressing the Ca 2+-buffering protein calretinin contain half as many synaptic ribbons and are innervated by twice as many efferent terminals as calretinin-negative hair cells. Efferent activity elicits inhibitory postsynaptic potentials in hair cells and thus inhibits their electrical resonance. In hair cells that exhibit spiking activity, efferent stimulation suppresses the generation of action potentials. Finally, efferent activity triggers a displacement of the hair bundle’s resting position. Conclusions and Significance: The hair cells of the bullfrog’s sacculus receive a rich efferent innervation with the heaviest projection to calretinin-containing cells. Stimulation of efferent axons desensitizes the hair cells and suppresses their spiking activity. Although efferent activation influences mechanoelectrical transduction, the mechanical effects on hair bundles ar

    Discovery of High-Affinity Protein Binding Ligands – Backwards

    Get PDF
    BACKGROUND: There is a pressing need for high-affinity protein binding ligands for all proteins in the human and other proteomes. Numerous groups are working to develop protein binding ligands but most approaches develop ligands using the same strategy in which a large library of structured ligands is screened against a protein target to identify a high-affinity ligand for the target. While this methodology generates high-affinity ligands for the target, it is generally an iterative process that can be difficult to adapt for the generation of ligands for large numbers of proteins. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a class of peptide-based protein ligands, called synbodies, which allow this process to be run backwards--i.e. make a synbody and then screen it against a library of proteins to discover the target. By screening a synbody against an array of 8,000 human proteins, we can identify which protein in the library binds the synbody with high affinity. We used this method to develop a high-affinity synbody that specifically binds AKT1 with a K(d)<5 nM. It was found that the peptides that compose the synbody bind AKT1 with low micromolar affinity, implying that the affinity and specificity is a product of the bivalent interaction of the synbody with AKT1. We developed a synbody for another protein, ABL1 using the same method. CONCLUSIONS/SIGNIFICANCE: This method delivered a high-affinity ligand for a target protein in a single discovery step. This is in contrast to other techniques that require subsequent rounds of mutational improvement to yield nanomolar ligands. As this technique is easily scalable, we believe that it could be possible to develop ligands to all the proteins in any proteome using this approach

    Multiple Measures Reveal Antiretroviral Adherence Successes and Challenges in HIV-Infected Ugandan Children

    Get PDF
    Background: Adherence to HIV antiretroviral therapy (ART) among children in developing settings is poorly understood. Methodology/Principal Findings: To understand the level, distribution, and correlates of ART adherence behavior, we prospectively determined monthly ART adherence through multiple measures and six-monthly HIV RNA levels among 121 Ugandan children aged 2–10 years for one year. Median adherence levels were 100% by three-day recall, 97.4% by 30-day visual analog scale, 97.3% by unannounced pill count/liquid formulation weights, and 96.3% by medication event monitors (MEMS). Interruptions in MEMS adherence of ≥\geq48 hours were seen in 57.0% of children; 36.3% had detectable HIV RNA at one year. Only MEMS correlated significantly with HIV RNA levels (r = −0.25, p = 0.04). Multivariable regression found the following to be associated with <90% MEMS adherence: hospitalization of child (adjusted odds ratio [AOR] 3.0, 95% confidence interval [CI] 1.6–5.5; p = 0.001), liquid formulation use (AOR 1.4, 95%CI 1.0–2.0; p = 0.04), and caregiver’s alcohol use (AOR 3.1, 95%CI 1.8–5.2; p<0.0001). Child’s use of co-trimoxazole (AOR 0.5, 95%CI 0.4–0.9; p = 0.009), caregiver’s use of ART (AOR 0.6, 95%CI 0.4–0.9; p = 0.03), possible caregiver depression (AOR 0.6, 95%CI 0.4–0.8; p = 0.001), and caregiver feeling ashamed of child’s HIV status (AOR 0.5, 95%CI 0.3–0.6; p<0.0001) were protective against <90% MEMS adherence. Change in drug manufacturer (AOR 4.1, 95%CI 1.5–11.5; p = 0.009) and caregiver’s alcohol use (AOR 5.5, 95%CI 2.8–10.7; p<0.0001) were associated with ≥\geq48-hour interruptions by MEMS, while second-line ART (AOR 0.3, 95%CI 0.1–0.99; p = 0.049) and increasing assets (AOR 0.7, 95%CI 0.6–0.9; p = 0.0007) were protective against these interruptions. Conclusions/Significance: Adherence success depends on a well-established medication taking routine, including caregiver support and adequate education on medication changes. Caregiver-reported depression and shame may reflect fear of poor outcomes, functioning as motivation for the child to adhere. Further research is needed to better understand and build on these key influential factors for adherence intervention development

    High-Throughput Sequencing of Six Bamboo Chloroplast Genomes: Phylogenetic Implications for Temperate Woody Bamboos (Poaceae: Bambusoideae)

    Get PDF
    BACKGROUND: Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. METHODOLOGY/PRINCIPAL FINDINGS: Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae. CONCLUSIONS/SIGNIFICANCE: The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of temperate woody bamboos, even with complete cp genome sequences, suggests that these lineages may have diverged very rapidly

    Power efficiency of outer hair cell somatic electromotility

    Get PDF
    © 2009 Rabbitt et al. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS Computational Biology 5 (2009): e1000444, doi:10.1371/journal.pcbi.1000444.Cochlear outer hair cells (OHCs) are fast biological motors that serve to enhance the vibration of the organ of Corti and increase the sensitivity of the inner ear to sound. Exactly how OHCs produce useful mechanical power at auditory frequencies, given their intrinsic biophysical properties, has been a subject of considerable debate. To address this we formulated a mathematical model of the OHC based on first principles and analyzed the power conversion efficiency in the frequency domain. The model includes a mixture-composite constitutive model of the active lateral wall and spatially distributed electro-mechanical fields. The analysis predicts that: 1) the peak power efficiency is likely to be tuned to a specific frequency, dependent upon OHC length, and this tuning may contribute to the place principle and frequency selectivity in the cochlea; 2) the OHC power output can be detuned and attenuated by increasing the basal conductance of the cell, a parameter likely controlled by the brain via the efferent system; and 3) power output efficiency is limited by mechanical properties of the load, thus suggesting that impedance of the organ of Corti may be matched regionally to the OHC. The high power efficiency, tuning, and efferent control of outer hair cells are the direct result of biophysical properties of the cells, thus providing the physical basis for the remarkable sensitivity and selectivity of hearing.This work was supported by NIDCD R01 DC04928 (Rabbitt), NIDCD R01 DC00384 (Brownell) and NASA Ames GSRA56000135 (Breneman)

    ‘Messy Democracy’: Democratic pedagogy and its discontents

    Get PDF
    This paper reflects on a recent participatory installation by the artists’ collective @.ac, entitled Messy Democracy, as a case study to raise questions concerning the ‘distribution of the sensible’ within the neoliberal art school. The project set up a quasi-autonomous artists’ space within Hanover Project gallery 9 April–3 May, 2018 at University of Central Lancashire, Preston. This exhibition functioned as a space of collective pedagogy, co-labour and ‘dissensus’ situated in relation to the wider operation of the department of Fine Art. It also sought to operate as a critical alternative to contemporary models of the art school, rooted in notions of usefulness and romantic self-realisation, but re-structured in the service of ‘commodification’ and ‘financialisation’ in wake of the Browne Report (2010). Most importantly, Messy Democracy represented a ‘theatocractic’ ‘undercommons’ for alternate and counter-hegemonic subjectivities to emerge. However, hierarchical logics, resulting from the hegemonic ‘distribution of the sensible’ stubbornly persisted even within this nascent pedagogic democracy
    • …
    corecore