1,619 research outputs found

    Formality of Sphere Bundles

    Full text link
    We study the formality of orientable sphere bundles over connected compact manifolds. When the base manifold is formal, we prove that the formality of the bundle is equivalent to the vanishing of the Bianchi-Massey tensor introduced by Crowley-Nordstr\"{o}m. As an example, this implies that the unit tangent bundle over a formal manifold can only be formal when the base manifold has vanishing Euler characteristic or a rational cohomology ring generated by one element. When the base manifold is not formal, we give an obstruction for the formality of sphere bundles whose Euler class is reducible.Comment: 18 page

    Ab initio study of electron-phonon interaction in phosphorene

    Get PDF
    The monolayer of black phosphorous, or phosphorene, has recently emerged as a new 2D semiconductor with intriguing highly anisotropic transport properties. Existing calculations of its intrinsic phonon-limited electronic transport properties so far rely on the deformation potential approximation, which is in general not directly applicable to anisotropic materials since the deformation along one specific direction can scatter electrons traveling in all directions. We perform a first-principles calculation of the electron-phonon interaction in phosphorene based on density functional perturbation theory and Wannier interpolation. Our calculation reveals that 1) the high anisotropy provides extra phase space for electron-phonon scattering, and 2) optical phonons have appreciable contributions. Both effects cannot be captured by the deformation potential calculations.Comment: 25 pages, 15 figure

    Significant reduction of lattice thermal conductivity by electron-phonon interaction in silicon with high carrier concentrations: a first-principles study

    Get PDF
    Electron-phonon interaction has been well known to create major resistance to electron transport in metals and semiconductors, whereas less studies were directed to its effect on the phonon transport, especially in semiconductors. We calculate the phonon lifetimes due to scattering with electrons (or holes), combine them with the intrinsic lifetimes due to the anharmonic phonon-phonon interaction, all from first-principles, and evaluate the effect of the electron-phonon interaction on the lattice thermal conductivity of silicon. Unexpectedly, we find a significant reduction of the lattice thermal conductivity at room temperature as the carrier concentration goes above 1e19 cm-3 (the reduction reaches up to 45% in p-type silicon at around 1e21 cm-3), a range of great technological relevance to thermoelectric materials.Comment: 19 pages, 5 figure
    • …
    corecore