9,931 research outputs found
Searching for high- isomers in the proton-rich mass region
Configuration-constrained potential-energy-surface calculations have been
performed to investigate the isomerism in the proton-rich mass
region. An abundance of high- states are predicted. These high- states
arise from two and four-quasi-particle excitations, with and
, respectively. Their excitation energies are comparatively
low, making them good candidates for long-lived isomers. Since most nuclei
under studies are prolate spheroids in their ground states, the oblate shapes
of the predicted high- states may indicate a combination of isomerism
and shape isomerism
Neutrinoless double-beta decay matrix elements in large shell-model spaces with the generator-coordinate method
We use the generator-coordinate method with realistic shell-model
interactions to closely approximate full shell-model calculations of the matrix
elements for the neutrinoless double-beta decay of Ca, Ge, and
Se. We work in one major shell for the first isotope, in the
space for the second and third, and finally in two major
shells for all three. Our coordinates include not only the usual axial
deformation parameter , but also the triaxiality angle and
neutron-proton pairing amplitudes. In the smaller model spaces our matrix
elements agree well with those of full shell-model diagonalization, suggesting
that our Hamiltonian-based GCM captures most of the important valence-space
correlations. In two major shells, where exact diagonalization is not currently
possible, our matrix elements are only slightly different from those in a
single shell.Comment: 8 pages, 7 figure
Non-Universality of Density and Disorder in Jammed Sphere Packings
We show for the first time that collectively jammed disordered packings of
three-dimensional monodisperse frictionless hard spheres can be produced and
tuned using a novel numerical protocol with packing density as low as
0.6. This is well below the value of 0.64 associated with the maximally random
jammed state and entirely unrelated to the ill-defined ``random loose packing''
state density. Specifically, collectively jammed packings are generated with a
very narrow distribution centered at any density over a wide density
range with variable disorder. Our results
support the view that there is no universal jamming point that is
distinguishable based on the packing density and frequency of occurence. Our
jammed packings are mapped onto a density-order-metric plane, which provides a
broader characterization of packings than density alone. Other packing
characteristics, such as the pair correlation function, average contact number
and fraction of rattlers are quantified and discussed.Comment: 19 pages, 4 figure
Normal heat conduction in one dimensional momentum conserving lattices with asymmetric interactions
The heat conduction behavior of one dimensional momentum conserving lattice
systems with asymmetric interparticle interactions is numerically investigated.
It is found that with certain degree of interaction asymmetry, the heat
conductivity measured in nonequilibrium stationary states converges in the
thermodynamical limit, in clear contrast to the well accepted viewpoint that
Fourier's law is generally violated in low dimensional momentum conserving
systems. It suggests in nonequilibrium stationary states the mass gradient
resulted from the asymmetric interactions may provide an additional phonon
scattering mechanism other than that due to the nonlinear interactions.Comment: 4 pages, 4 figure
- …