744 research outputs found
Granular Solid Hydrodynamics
Granular elasticity, an elasticity theory useful for calculating static
stress distribution in granular media, is generalized to the dynamic case by
including the plastic contribution of the strain. A complete hydrodynamic
theory is derived based on the hypothesis that granular medium turns
transiently elastic when deformed. This theory includes both the true and the
granular temperatures, and employs a free energy expression that encapsulates a
full jamming phase diagram, in the space spanned by pressure, shear stress,
density and granular temperature. For the special case of stationary granular
temperatures, the derived hydrodynamic theory reduces to {\em hypoplasticity},
a state-of-the-art engineering model.Comment: 42 pages 3 fi
Measurement of Trace I-129 Concentrations in CsI Powder and Organic Liquid Scintillator with Accelerator Mass Spectrometry
Levels of trace radiopurity in active detector materials is a subject of
major concern in low-background experiments. Procedures were devised to measure
trace concentrations of I-129 in the inorganic salt CsI as well as in organic
liquid scintillator with Accelerator Mass Spectrometry (AMS) which leads to
improvement in sensitivities by several orders of magnitude over other methods.
No evidence of their existence in these materials were observed. Limits of < 6
X 10^{-13} g/g and < 2.6 X 10^{-17} g/g on the contaminations of I-129 in CsI
and liquid scintillator, respectively, were derived.These are the first results
in a research program whose goals are to develop techniques to measure trace
radioactivity in detector materials by AMS.Comment: Proceedings of 10th International Conference on Accelerator Mass
Spectrometr
Can surface flux transport account for the weak polar field in cycle 23?
To reproduce the weak magnetic field on the polar caps of the Sun observed
during the declining phase of cycle 23 poses a challenge to surface flux
transport models since this cycle has not been particularly weak. We use a
well-calibrated model to evaluate the parameter changes required to obtain
simulated polar fields and open flux that are consistent with the observations.
We find that the low polar field of cycle 23 could be reproduced by an increase
of the meridional flow by 55% in the last cycle. Alternatively, a decrease of
the mean tilt angle of sunspot groups by 28% would also lead to a similarly low
polar field, but cause a delay of the polar field reversals by 1.5 years in
comparison to the observations.Comment: 9 pages, 8 figures, Space Science Reviews, accepte
Restructuring of colloidal aggregates in shear flow: Coupling interparticle contact models with Stokesian dynamics
A method to couple interparticle contact models with Stokesian dynamics (SD)
is introduced to simulate colloidal aggregates under flow conditions. The
contact model mimics both the elastic and plastic behavior of the cohesive
connections between particles within clusters. Owing to this, clusters can
maintain their structures under low stress while restructuring or even breakage
may occur under sufficiently high stress conditions. SD is an efficient method
to deal with the long-ranged and many-body nature of hydrodynamic interactions
for low Reynolds number flows. By using such a coupled model, the restructuring
of colloidal aggregates under stepwise increasing shear flows was studied.
Irreversible compaction occurs due to the increase of hydrodynamic stress on
clusters. Results show that the greater part of the fractal clusters are
compacted to rod-shaped packed structures, while the others show isotropic
compaction.Comment: A simulation movie be found at
http://www-levich.engr.ccny.cuny.edu/~seto/sites/colloidal_aggregates_shearflow.htm
Thermoelectric effects in superconducting proximity structures
Attaching a superconductor in good contact with a normal metal makes rise to
a proximity effect where the superconducting correlations leak into the normal
metal. An additional contact close to the first one makes it possible to carry
a supercurrent through the metal. Forcing this supercurrent flow along with an
additional quasiparticle current from one or many normal-metal reservoirs makes
rise to many interesting effects. The supercurrent can be used to tune the
local energy distribution function of the electrons. This mechanism also leads
to finite thermoelectric effects even in the presence of electron-hole
symmetry. Here we review these effects and discuss to which extent the existing
observations of thermoelectric effects in metallic samples can be explained
through the use of the dirty-limit quasiclassical theory.Comment: 14 pages, 10 figures. 374th WE-Heraus seminar: Spin physics of
superconducting heterostructures, Bad Honnef, 200
Characterization of starch synthetic genes and starch granule during seeds development between synthetic hexaploid wheat and its parents
To study the development of starch granules in polyploid wheats, we investigated the expression of starch synthetic genes between the synthetic hexaploid wheat SHW-L1, its parents T. turgidum AS2255 and diploid Ae. tauschii AS60. The synthetic hexaploid wheat SHW-L1 showed significantly higher starch content and grain weight than its parents. Scanning electron microscopy (SEM) showed that SHW-L1 rapidly developed starch granules than AS2255 and AS60. The amount of B-type granule in AS60 was less than that in SHW-L1 and AS2255. RT-qPCR result showed that the starch synthetic genes AGPLSU1, AGPLSU2, AGPSSU1, AGPSSU2, GBSSI, SSIII, PHO1 and PHO2 expressed at earlier stages with larger quantity in SHW-L1 than in its parents during wheat grain development. The expression of the above mentioned genes in AS60 was slower than in SHW-L1 and AS2255. The expression pattern of starch synthase genes was also associated with the grain weight and starch content in all three genotypes. The results suggested that the synthetic hexaploid wheat inherited the pattern of starch granule development and starch synthase gene expression from tetraploid parent. The results suggest that tetraploid wheat could plays more important role for starch quality improvement in hexaploid wheat
Vortex Lattice Melting into Disentangled Liquid Followed by the 3D-2D Decoupling Transition in YBa_2Cu_4O_8 Single Crystals
A sharp resistance drop associated with vortex lattice melting was observed
in high quality YBa_2Cu_4O_8 single crystals. The melting line is well
described well by the anisotropic GL theory. Two thermally activated flux flow
regions, which were separated by a crossover line B_cr=1406.5(1-T/T_c)/T
(T_c=79.0 K, B_cr in T), were observed in the vortex liquid phase. Activation
energy for each region was obtained and the corresponding dissipation mechanism
was discussed. Our results suggest that the vortex lattice in YBa_2Cu_4O_8
single crystal melts into disentangled liquid, which then undergoes a 3D-2D
decoupling transition.Comment: 5 pages, 4 eps figures, RevTex (Latex2.09
The Outer Tracker Detector of the HERA-B Experiment Part I: Detector
The HERA-B Outer Tracker is a large system of planar drift chambers with
about 113000 read-out channels. Its inner part has been designed to be exposed
to a particle flux of up to 2.10^5 cm^-2 s^-1, thus coping with conditions
similar to those expected for future hadron collider experiments. 13
superlayers, each consisting of two individual chambers, have been assembled
and installed in the experiment. The stereo layers inside each chamber are
composed of honeycomb drift tube modules with 5 and 10 mm diameter cells.
Chamber aging is prevented by coating the cathode foils with thin layers of
copper and gold, together with a proper drift gas choice. Longitudinal wire
segmentation is used to limit the occupancy in the most irradiated detector
regions to about 20 %. The production of 978 modules was distributed among six
different laboratories and took 15 months. For all materials in the fiducial
region of the detector good compromises of stability versus thickness were
found. A closed-loop gas system supplies the Ar/CF4/CO2 gas mixture to all
chambers. The successful operation of the HERA-B Outer Tracker shows that a
large tracker can be efficiently built and safely operated under huge radiation
load at a hadron collider.Comment: 28 pages, 14 figure
- …