280 research outputs found
A Constrained Fuzzy Knowledge-Based System for the Management of Container Yard Operations
The management of container yard operations is considered by yard operators to be a very challenging task due to the many uncertainties inherent in such operations. The storage of the containers is one of those operations that require proper management for the efficient utilisation of the yard, requiring rapid retrieval time and a minimum number of re-handlings. The main challenge is when containers of a different size, type, or weight need to be stored in a yard that holds a number of pre-existing containers. This challenge becomes even more complex when the date and time for the departure of the containers are unknown, as is the case when the container is collected by a third-party logistics company without any prior notice being given. The aim of this study is to develop a new system for the management of container yard operations that takes into consideration a number of factors and constraints that occur in a real-life situation. One of these factors is the duration of stay for the topmost containers of each stack, when the containers are stored. Because the duration of stay for containers in a yard varies dynamically over time, an ‘ON/OFF’ strategy is proposed to activate/deactivate the duration of stay factor constraint if the length of stay for these containers varies significantly over time. A number of tools and techniques are utilised for developing the proposed system including: discrete event simulation for the modelling of container storage and retrieval operations, a fuzzy know ledge-based model for the stack allocation of containers, and a heuristic algorithm called ‘neighbourhood’ for the container retrieval operation. Results show that by adopting the proposed ‘ON/OFF’ strategy, 5% of the number of re-handlings, 2.5% of the total retrieval time, 6.6% of the total re-handling time and 42% of the average waiting time per truck are reduced
The Kuramoto model in complex networks
181 pages, 48 figures. In Press, Accepted Manuscript, Physics Reports 2015 Acknowledgments We are indebted with B. Sonnenschein, E. R. dos Santos, P. Schultz, C. Grabow, M. Ha and C. Choi for insightful and helpful discussions. T.P. acknowledges FAPESP (No. 2012/22160-7 and No. 2015/02486-3) and IRTG 1740. P.J. thanks founding from the China Scholarship Council (CSC). F.A.R. acknowledges CNPq (Grant No. 305940/2010-4) and FAPESP (Grants No. 2011/50761-2 and No. 2013/26416-9) for financial support. J.K. would like to acknowledge IRTG 1740 (DFG and FAPESP).Peer reviewedPreprin
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Recurrent Massive Subcutaneous Hemorrhage in Neurofibromatosis Type 1: A Case Report
Neurofibromatosis type 1 (NF-1) is an autosomal dominant disorder that has three major features: multiple neural tumors, café-au-lait spots, and pigmented iris hamartomas (Lisch nodules). The purpose of this case report is to advise physicians of the danger associated with the progression of fast-onset massive hemorrhage to hemodynamic instability, which mandates rapid treatment to prevent the development of a life-threatening condition. A 64-yr-old woman with NF-1 was admitted to the Emergency Department (ED) because of a rapidly growing, 10×5×3 cm-sized mass on the left back area. She had previously undergone surgery for a large subcutaneous hematoma, which had developed on her right back area 30 yr before. She became hemodynamically unstable with hypotension during the next 3 hr after admission to ED. Resuscitation and blood transfusion were done, and the hematoma was surgically removed. The mass presented as a subcutaneous, massive hematoma with pathologic findings of neurofibroma. We report a case of NF-1 that presented as recurrent, massive, subcutaneous hemorrhage on the back region combined with hypovolemic shock
Long-term decline of the Amazon carbon sink
Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades1, 2, with a substantial fraction of this sink probably located in the tropics3, particularly in the Amazon4. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity5. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale1, 2, and is contrary to expectations based on models6
Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength
Mineralogical analysis on pastes of Spanish Portland cement Type I, blended with nanosilica was carried out by conventional and high-resolution thermogravimetric analysis (TG-HRTG) and X-ray diffraction (XRD) in order to determine the quantity of the different mineralogical phases obtained during the hydration process. Simultaneously, mortars with the same materials and replacement ratio were made in order to assess their compressive strength for up to 28 days of curing time. In this paper, the rate and quantity of each one of the main constituent phases of the cement during its hydration process (CSH, portlandite, stratlingite, etc.) were determined. A correlation between the quantity of CSH and the development of compressive strength was established. Additionally, the pozzolanic activity of nanosilica was evaluated by quantifying the fixation of calcium hydroxide and its impact on the development of the compressive strength. © 2012 Elsevier Ltd. All rights reserved.The authors express their thanks to Cementos Argos S.A. and to COLCIENCIAS (Project 20201007768) of Colombia for their financial support in the execution of this research.Tobón, JI.; Paya Bernabeu, JJ.; Borrachero Rosado, MV.; Restrepo Baena, OJ. (2012). Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength. Construction and Building Materials. 36:736-742. https://doi.org/10.1016/j.conbuildmat.2012.06.043S7367423
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Differential Release and Phagocytosis of Tegument Glycoconjugates in Neurocysticercosis: Implications for Immune Evasion Strategies
Neurocysticercosis (NCC) is an infection of the central nervous system (CNS) by the metacestode of the helminth Taenia solium. The severity of the symptoms is associated with the intensity of the immune response. First, there is a long asymptomatic period where host immunity seems incapable of resolving the infection, followed by a chronic hypersensitivity reaction. Since little is known about the initial response to this infection, a murine model using the cestode Mesocestoides corti (syn. Mesocestoides vogae) was employed to analyze morphological changes in the parasite early in the infection. It was found that M. corti material is released from the tegument making close contact with the nervous tissue. These results were confirmed by infecting murine CNS with ex vivo–labeled parasites. Because more than 95% of NCC patients exhibit humoral responses against carbohydrate-based antigens, and the tegument is known to be rich in glycoconjugates (GCs), the expression of these types of molecules was analyzed in human, porcine, and murine NCC specimens. To determine the GCs present in the tegument, fluorochrome-labeled hydrazides as well as fluorochrome-labeled lectins with specificity to different carbohydrates were used. All the lectins utilized labeled the tegument. GCs bound by isolectinB4 were shed in the first days of infection and not resynthesized by the parasite, whereas GCs bound by wheat germ agglutinin and concavalinA were continuously released throughout the infectious process. GCs bound by these three lectins were taken up by host cells. Peanut lectin-binding GCs, in contrast, remained on the parasite and were not detected in host cells. The parasitic origin of the lectin-binding GCs found in host cells was confirmed using antibodies against T. solium and M. corti. We propose that both the rapid and persistent release of tegumental GCs plays a key role in the well-known immunomodulatory effects of helminths, including immune evasion and life-long inflammatory sequelae seen in many NCC patients
Cell-Free Antigens from Paracoccidioides brasiliensis Drive IL-4 Production and Increase the Severity of Paracoccidioidomycosis
The thermally dimorphic fungus Paracoccidioides brasiliensis (Pb) is the causative agent of paracoccidioidomycosis (PCM), one of the most frequent systemic mycosis that affects the rural population in Latin America. PCM is characterized by a chronic inflammatory granulomatous reaction, which is consequence of a Th1-mediated adaptive immune response. In the present study we investigated the mechanisms involved in the immunoregulation triggered after a prior contact with cell-free antigens (CFA) during a murine model of PCM. The results showed that the inoculation of CFA prior to the infection resulted in disorganized granulomatous lesions and increased fungal replication in the lungs, liver and spleen, that paralleled with the higher levels of IL-4 when compared with the control group. The role of IL-4 in facilitating the fungal growth was demonstrated in IL-4-deficient- and neutralizing anti-IL-4 mAb-treated mice. The injection of CFA did not affect the fungal growth in these mice, which, in fact, exhibited a significant diminished amount of fungus in the tissues and smaller granulomas. Considering that in vivo anti-IL-4-application started one week after the CFA-inoculum, it implicates that IL-4-CFA-induced is responsible by the mediation of the observed unresponsiveness. Further, the characterization of CFA indicated that a proteic fraction is required for triggering the immunosuppressive mechanisms, while glycosylation or glycosphingolipids moieties are not. Taken together, our data suggest that the prior contact with soluble Pb antigens leads to severe PCM in an IL-4 dependent manner
- …
