7 research outputs found

    The role of orbital angular momentum in the proton spin

    Full text link
    The orbital angular momenta LuL^u and LdL^d of up and down quarks in the proton are estimated as functions of the energy scale as model-independently as possible, on the basis of Ji's angular momentum sum rule. This analysis indicates that Lu−LdL^u - L^d is large and negative even at low energy scale of nonperturbative QCD, in contrast to Thomas' similar analysis based on the refined cloudy bag model. We pursuit the origin of this apparent discrepancy and suggest that it may have a connection with the fundamental question of how to define quark orbital angular momenta in QCD.Comment: 14 pages, 3 figures, 1 table A slightly extended version to appear in Eur. Phys. J.

    Reconfigurable superconducting vortex pinning potential for magnetic disks in hybrid structures

    Get PDF
    High resolution scanning Hall probe microscopy has been used to directly visualise the superconducting vortex behavior in hybrid structures consisting of a square array of micrometer-sized Py ferromagnetic disks covered by a superconducting Nb thin film. At remanence the disks exist in almost fully flux-closed magnetic vortex states, but the observed cloverleaf-like stray fields indicate the presence of weak in-plane anisotropy. Micromagnetic simulations suggest that the most likely origin is an unintentional shape anisotropy. We have studied the pinning of added free superconducting vortices as a function of the magnetisation state of the disks, and identified a range of different phenomena arising from competing energy contributions. We have also observed clear differences in the pinning landscape when the superconductor and the ferromagnet are electron ically coupled or insulated by a thin dielectric layer, with an indication of non-trivial vortex-vortex interactions. We demonstrate a complete reconfiguration of the vortex pinning potential when the magnetisation of the disks evolves from the vortex-like state to an onion-like one under an in-plane magnetic field. Our results are in good qualitative agreement with theoretical predictions and could form the basis of novel superconducting devices based on reconfigurable vortex pinning sites
    corecore