369 research outputs found
Dendritic Spine Shape Analysis: A Clustering Perspective
Functional properties of neurons are strongly coupled with their morphology.
Changes in neuronal activity alter morphological characteristics of dendritic
spines. First step towards understanding the structure-function relationship is
to group spines into main spine classes reported in the literature. Shape
analysis of dendritic spines can help neuroscientists understand the underlying
relationships. Due to unavailability of reliable automated tools, this analysis
is currently performed manually which is a time-intensive and subjective task.
Several studies on spine shape classification have been reported in the
literature, however, there is an on-going debate on whether distinct spine
shape classes exist or whether spines should be modeled through a continuum of
shape variations. Another challenge is the subjectivity and bias that is
introduced due to the supervised nature of classification approaches. In this
paper, we aim to address these issues by presenting a clustering perspective.
In this context, clustering may serve both confirmation of known patterns and
discovery of new ones. We perform cluster analysis on two-photon microscopic
images of spines using morphological, shape, and appearance based features and
gain insights into the spine shape analysis problem. We use histogram of
oriented gradients (HOG), disjunctive normal shape models (DNSM), morphological
features, and intensity profile based features for cluster analysis. We use
x-means to perform cluster analysis that selects the number of clusters
automatically using the Bayesian information criterion (BIC). For all features,
this analysis produces 4 clusters and we observe the formation of at least one
cluster consisting of spines which are difficult to be assigned to a known
class. This observation supports the argument of intermediate shape types.Comment: Accepted for BioImageComputing workshop at ECCV 201
Three-Dimensional Analysis of Spiny Dendrites Using Straightening and Unrolling Transforms
Current understanding of the synaptic organization of the brain depends to a large extent on knowledge about the synaptic inputs to the neurons. Indeed, the dendritic surfaces of pyramidal cells (the most common neuron in the cerebral cortex) are covered by thin protrusions named dendritic spines. These represent the targets of most excitatory synapses in the cerebral cortex and therefore, dendritic spines prove critical in learning, memory and cognition. This paper presents a new method that facilitates the analysis of the 3D structure of spine insertions in dendrites, providing insight on spine distribution patterns. This method is based both on the implementation of straightening and unrolling transformations to move the analysis process to a planar, unfolded arrangement, and on the design of DISPINE, an interactive environment that supports the visual analysis of 3D patterns
Cancer risk in hospitalised psoriasis patients: a follow-up study in Sweden
We examined overall and specific cancer risks among Swedish subjects who had been hospitalised one or more times for psoriasis. A database was created by identifying such patients from the Swedish Hospital Discharge Register and linking them with the Cancer Registry. Follow-up of patients was carried out from the last hospitalisation through 2004. A total of 15 858 patients were hospitalised for psoriasis during 1965–2004, of whom 1408 developed cancer, giving an overall standardised incidence ratios (SIRs) of 1.33. A significant excess was noted for squamous cell skin cancer, and for cancers of the upper aerodigestive tract, oesophagus, stomach, liver, pancreas, lung, kidney and bladder as well as non-Hodgkin lymphoma. Many of these may reflect the effects of alcohol drinking and tobacco smoking. Patients with multiple hospitalisations showed high risk, particularly for oesophageal (SIR 6.97) and skin (SIR 4.76) cancers
AIRE activated tissue specific genes have histone modifications associated with inactive chromatin
The Autoimmune Regulator (AIRE) protein is expressed in thymic medullary epithelial cells, where it promotes the ectopic expression of tissue-restricted antigens needed for efficient negative selection of developing thymocytes. Mutations in AIRE cause APECED syndrome, which is characterized by a breakdown of self-tolerance. The molecular mechanism by which AIRE increases the expression of a variety of different genes remains unknown. Here, we studied AIRE-regulated genes using whole genome expression analysis and chromatin immunoprecipitation. We show that AIRE preferentially activates genes that are tissue-specific and characterized by low levels of initial expression in stably transfected HEK293 cell model and mouse thymic medullary epithelial cells. In addition, the AIRE-regulated genes lack active chromatin marks, such as histone H3 trimethylation (H3K4me3) and acetylation (AcH3), on their promoters. We also show that during activation by AIRE, the target genes acquire histone H3 modifications associated with transcription and RNA polymerase II. In conclusion, our data show that AIRE is able to promote ectopic gene expression from chromatin associated with histone modifications characteristic to inactive genes
In vivo STED microscopy visualizes morphological changes of large PSD95 assemblies over several hours in the mouse visual cortex
Abstract The post-synaptic density (PSD) is an electron dense region consisting of ~1000 proteins, found at the postsynaptic membrane of excitatory synapses, which varies in size depending upon synaptic strength. PSD95 is an abundant scaffolding protein in the PSD and assembles a family of supercomplexes comprised of neurotransmitter receptors, ion channels, as well as signalling and structural proteins. We use superresolution STED (STimulated Emission Depletion) nanoscopy to determine the size and shape of PSD95 in the anaesthetised mouse visual cortex. Adult knock-in mice expressing eGFP fused to the endogenous PSD95 protein were imaged at time points from 1 min to 6 h. Superresolved large assemblies of PSD95 show different sub-structures; most large assemblies were ring-like, some horse-shoe or figure-8 shaped, and shapes were continuous or made up of nanoclusters. The sub-structure appeared stable during the shorter (minute) time points, but after 1 h, more than 50% of the large assemblies showed a change in sub-structure. Overall, these data showed a sub-morphology of large PSD95 assemblies which undergo changes within the 6 hours of observation in the anaesthetised mouse
Cost-effectiveness analysis of pemetrexed versus docetaxel in the second-line treatment of non-small cell lung cancer in Spain: results for the non-squamous histology population
BackgroundThe objective of this study was to conduct a cost-effectiveness evaluation of pemetrexed compared to docetaxel in the treatment of advanced or metastatic non-small cell lung cancer (NSCLC) for patients with predominantly non-squamous histology in the Spanish healthcare setting.MethodsA Markov model was designed consisting of stable, responsive, progressive disease and death states. Patients could also experience adverse events as long as they received chemotherapy. Clinical inputs were based on an analysis of a phase III clinical trial that identified a statistically significant improvement in overall survival for non-squamous patients treated with pemetrexed compared with docetaxel. Costs were collected from the Spanish healthcare perspective.ResultsOutcomes of the model included total costs, total quality-adjusted life years (QALYs), total life years gained (LYG) and total progression-free survival (PFS). Mean survival was 1.03 years for the pemetrexed arm and 0.89 years in the docetaxel arm; QALYs were 0.52 compared to 0.42. Per-patient lifetime costs were € 34677 and € 32343, respectively. Incremental cost-effectiveness ratios were € 23967 per QALY gained and € 17225 per LYG.ConclusionsPemetrexed as a second-line treatment option for patients with a predominantly non-squamous histology in NSCLC is a cost-effective alternative to docetaxel according to the € 30000/QALY threshold commonly accepted in Spain
Computational geometry analysis of dendritic spines by structured illumination microscopy
We are currently short of methods that can extract objective parameters of dendritic spines useful for their categorization. Authors present in this study an automatic analytical pipeline for spine geometry using 3D-structured illumination microscopy, which can effectively extract many geometrical parameters of dendritic spines without bias and automatically categorize spine population based on their morphological feature
Measurement of nuclear effects in neutrino-argon interactions using generalized kinematic imbalance variables with the MicroBooNE detector
We present a set of new generalized kinematic imbalance variables that can be measured in neutrino scattering. These variables extend previous measurements of kinematic imbalance on the transverse plane and are more sensitive to modeling of nuclear effects. We demonstrate the enhanced power of these variables using simulation and then use the MicroBooNE detector to measure them for the first time. We report flux-integrated single- and double-differential measurements of charged-current muon neutrino scattering on argon using a topology with one muon and one proton in the final state as a function of these novel kinematic imbalance variables. These measurements allow us to demonstrate that the treatment of charged current quasielastic interactions in genie version 2 is inadequate to describe data. Further, they reveal tensions with more modern generator predictions particularly in regions of phase space where final state interactions are important
Use Of Medical Tourism For Hip And Knee Surgery In Osteoarthritis: A Qualitative Examination Of Distinctive Attitudinal Characteristics Among Canadian Patients
Background
Medical tourism is the term that describes patients’ international travel with the intention of seeking medical treatment. Some medical tourists go abroad for orthopaedic surgeries, including hip and knee resurfacing and replacement. In this article we examine the findings of interviews with Canadian medical tourists who went abroad for such surgeries to determine what is distinctive about their attitudes when compared to existing qualitative research findings about patients’ decision-making in and experiences of these same procedures in their home countries.
Methods
Fourteen Canadian medical tourists participated in semi-structured phone interviews, all of whom had gone abroad for hip or knee surgery to treat osteoarthritis. Transcripts were coded and thematically analysed, which involved comparing emerging findings to those in the existing qualitative literature on hip and knee surgery.
Results
Three distinctive attitudinal characteristics among participants were identified when interview themes were compared to findings in the existing qualitative research on hip and knee surgery in osteoarthritis. These attitudinal characteristics were that the medical tourists we spoke with were: (1) comfortable health-related decision-makers; (2) unwavering in their views about procedure necessity and urgency; and (3) firm in their desires to maintain active lives.
Conclusions
Compared to other patients reported on in the existing qualitative hip and knee surgery literature, medical tourists are less likely to question their need for surgery and are particularly active in their pursuit of surgical intervention. They are also comfortable with taking control of health-related decisions. Future research is needed to identify motivators behind patients’ pursuit of care abroad, determine if the attitudinal characteristics identified here hold true for other patient groups, and ascertain the impact of these attitudinal characteristics on surgical outcomes. Arthritis care providers can use the attitudinal characteristics identified here to better advise osteoarthritis patients who are considering seeking care abroad
- …