4,910 research outputs found

    Planetesimal Accretion in Binary Systems: Could Planets Form Around Alpha Centauri B ?

    Full text link
    Stellar perturbations affect planet-formation in binary systems. Recent studies show that the planet-formation stage of mutual accretion of km-sized planetesimals is most sensitive to binary effects. In this paper, the condition for planetesimal accretion is investigated around Alpha CenB, which is believed to be an ideal candidate for detection of an Earth-like planet in or near its habitable zone(0.5-0.9 AU). A simplified scaling method is developed to estimate the accretion timescale of the planetesimals embedded in a protoplanetary disk. Twenty-four cases with different binary inclinations(i_B=0, 0.1, 1.0, and 10 deg), gas densities(0.3,1,and 3 times of the Minimum Mass of Solar Nebula, MMSN hereafter), and with and without gas depletion, are simulated. We find: (1)...(2)...(3)...(4)...(see the paper for details). In other words, our results suggest that formation of Earth-like planets through accretion of km-sized planetesimals is possible in Alpha CenB, while formation of gaseous giant planets is not favorable.Comment: 16 pages 7 figures, ApJ 708, 156

    Sparse Estimation using Bayesian Hierarchical Prior Modeling for Real and Complex Linear Models

    Get PDF
    In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex-valued models, this paper proposes a GSM model - the Bessel K model - that induces concave penalty functions for the estimation of complex sparse signals. The properties of the Bessel K model are analyzed when it is applied to Type I and Type II estimation. This analysis reveals that, by tuning the parameters of the mixing pdf different penalty functions are invoked depending on the estimation type used, the value of the noise variance, and whether real or complex signals are estimated. Using the Bessel K model, we derive a sparse estimator based on a modification of the expectation-maximization algorithm formulated for Type II estimation. The estimator includes as a special instance the algorithms proposed by Tipping and Faul [1] and by Babacan et al. [2]. Numerical results show the superiority of the proposed estimator over these state-of-the-art estimators in terms of convergence speed, sparseness, reconstruction error, and robustness in low and medium signal-to-noise ratio regimes.Comment: The paper provides a new comprehensive analysis of the theoretical foundations of the proposed estimators. Minor modification of the titl

    Modeling Planetary System Formation with N-Body Simulations: Role of Gas Disk and Statistics Comparing to Observations

    Full text link
    During the late stage of planet formation when Mars-size cores appear, interactions among planetary cores can excite their orbital eccentricities, speed their merges and thus sculpture the final architecture of planet systems. This series of work contributes to the final assembling of planet systems with N-body simulations, including the type I and II migration of planets, gas accretion of massive cores in a viscous disk. In this paper, the standard formulations of type I and II migrations are adopted to investigate the formation of planet systems around solar mass stars. Statistics on the final distributions of planetary masses, semi-major axes and eccentricities are derived, which are comparable to those of the observed systems. Our simulations predict some orbital signatures of planet systems around solar mass stars: 36% of the survival planets are giant planets (Mp>10Me). Most of the massive giant planets (Mp>30Me) locate at 1-10AU. Terrestrial planets distribute more or less evenly at <1-2 AU. Planets in inner orbits (<1 AU) may accumulate at the inner edges of either the protostellar disk (3-5 days) or its MRI dead zone (30-50 days). There is a planet desert in the mass-eccecntricity diagram, i.e., lack of planets with masses 0.005 - 0.08 MJ in highly eccentric orbits (e > 0.3 - 0.4). The average eccentricity (~ 0.15) of the giant planets (Mp>10Me) are bigger than that (~ 0.05) of the terrestrial planets (Mp< 10Me). A planet system with more planets tends to have smaller planet masses and orbital eccentricities on average.Comment: receiveded by Ap

    Dinosaur tracks from the Kilmaluag Formation (Bathonian, Middle Jurassic) of Score Bay, Isle of Skye, Scotland, UK

    Get PDF
    Tracks of a juvenile theropod dinosaur with footprint lengths of between 2 and 9 cm as well as adults of the same ichnospecies with footprints of about 15–25 cm in length were found in the Bathonian (Middle Jurassic) Kilmaluag Formation of Score Bay, northwestern Trotternish Peninsula, Isle of Skye, Scotland, UK. Two footprint sizes occur together on the same bedding plane in the central portion of Score Bay, both in situ and on loose blocks. Another horizon containing footprints above this was also identified. The footprints from the lowest horizon were produced in a desiccated silty mud that was covered with sand. A close association of both adults and juveniles with similar travel direction indicated by the footprints may suggest post-hatching care in theropod dinosaurs. Other footprints, produced on a rippled sandy substrate, have been found on the slightly higher bedding plane at this locality. Loose blocks found 130 m to the northeast in the central part of Score Bay have not been correlated with any in situ sediments, but were preserved in a similar manner to those from the higher bedding plane. These tracks represent the youngest dinosaur remains yet found in Scotland

    Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions

    Full text link
    We report theoretical investigations on the role of interfacial bonding mechanism and its resulting structures to quantum transport in molecular wires. Two bonding mechanisms for the Au-S bond in an Au(111)/1,4-benzenedithiol(BDT)/Au(111) junction were identified by ab initio calculation, confirmed by a recent experiment, which, we showed, critically control charge conduction. It was found, for Au/ BDT/Au junctions, the hydrogen atom, bound by a dative bond to the Sulfur, is energetically non-dissociative after the interface formation. The calculated conductance and junction breakdown forces of H-non-dissociative Au/BDT/Au devices are consistent with the experimental values, while the H-dissociated devices, with the interface governed by typical covalent bonding, give conductance more than an order of magnitude larger. By examining the scattering states that traverse the junctions, we have revealed that mechanical and electric properties of a junction have strong correlation with the bonding configuration. This work clearly demonstrates that the interfacial details, rather than previously believed many-body effects, is of vital importance for correctly predicting equilibrium conductance of molecular junctions; and manifests that the interfacial contact must be carefully understood for investigating quantum transport properties of molecular nanoelectronics.Comment: 18 pages, 6 figures, 2 tables, to be appeared in Frontiers of Physics 9(6), 780 (2014

    Association of the mtDNA m.4171C>A/MT-ND1 mutation with both optic neuropathy and bilateral brainstem lesions

    Get PDF
    Background: An increasing number of mitochondrial DNA (mtDNA) mutations, mainly in complex I genes, have been associated with variably overlapping phenotypes of Leber’s hereditary optic neuropathy (LHON), mitochondrial encephalomyopathy with stroke-like episodes (MELAS) and Leigh syndrome (LS). We here describe the first case in which the m.4171C>A/MT-ND1 mutation, previously reported only in association with LHON, leads also to a Leigh-like phenotype. Case presentation: A 16-year-old male suffered subacute visual loss and recurrent vomiting and vertigo associated with bilateral brainstem lesions affecting the vestibular nuclei. His mother and one sister also presented subacute visual loss compatible with LHON. Sequencing of the entire mtDNA revealed the homoplasmic m.4171C>A/MT-ND1 mutation, previously associated with pure LHON, on a haplogroup H background. Three additional non-synonymous homoplasmic transitions affecting ND2 (m.4705T>C/MT-ND2 and m.5263C>T/MT-ND2) and ND6 (m.14180T>C/MT-ND6) subunits, well recognized as polymorphisms in other mtDNA haplogroups but never found on the haplogroup H background, were also present. Conclusion: This case widens the phenotypic expression of the rare m.4171C>A/MT-ND1 LHON mutation, which may also lead to Leigh-like brainstem lesions, and indicates that the co-occurrence of other ND non-synonymous variants, found outside of their usual mtDNA backgrounds, may have increased the pathogenic potential of the primary LHON mutation

    A quantitative literature-curated gold standard for kinase-substrate pairs

    Get PDF
    We describe the Yeast Kinase Interaction Database (KID, http://www.moseslab.csb.utoronto.ca/KID/), which contains high- and low-throughput data relevant to phosphorylation events. KID includes 6,225 low-throughput and 21,990 high-throughput interactions, from greater than 35,000 experiments. By quantitatively integrating these data, we identified 517 high-confidence kinase-substrate pairs that we consider a gold standard. We show that this gold standard can be used to assess published high-throughput datasets, suggesting that it will enable similar rigorous assessments in the future

    Effects of laser surface melting on erosion-corrosion of X65 steel in liquid-solid jet impingement conditions

    Get PDF
    Laser surface melting (LSM) has the potential to increase the resistance of steels to erosion-corrosion. In this study a submerged jet impingement system containing a brine under saturated CO2 conditions with sand has been used to assess the effect of LSM on the erosion-corrosion resistance of X65 steel. Erosion-corrosion rates under different experimental conditions were deduced based on CFD-simulated results and surface profile measurements. Scanning electron microscopy (SEM) was used to observe the morphology of erosion-corrosion damage. The results show that the erosion-corrosion rates at various impact angles can be decreased by LSM. Changes in microstructure, corrosion behavior and hardness of X65 steel induced by laser treatment were analyzed by using optical microscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis together with electrochemical polarization and hardness distribution measurements, in order to clarify how laser treatment imparts the effects on the steel

    Gradient microfluidics enables rapid bacterial growth inhibition testing

    Get PDF
    Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (&lt;4 days, compared to weeks in a culture flask)
    • …
    corecore