17 research outputs found
Spectroscopy of free radicals and radical containing entrance-channel complexes in superfluid helium nano-droplets
The spectroscopy of free radicals and radical containing entrance-channel
complexes embedded in superfluid helium nano-droplets is reviewed. The
collection of dopants inside individual droplets in the beam represents a
micro-canonical ensemble, and as such each droplet may be considered an
isolated cryo-reactor. The unique properties of the droplets, namely their low
temperature (0.4 K) and fast cooling rates ( K s) provides
novel opportunities for the formation and high-resolution studies of molecular
complexes containing one or more free radicals. The production methods of
radicals are discussed in light of their applicability for embedding the
radicals in helium droplets. The spectroscopic studies performed to date on
molecular radicals and on entrance / exit-channel complexes of radicals with
stable molecules are detailed. The observed complexes provide new information
on the potential energy surfaces of several fundamental chemical reactions and
on the intermolecular interactions present in open-shell systems. Prospects of
further experiments of radicals embedded in helium droplets are discussed,
especially the possibilities to prepare and study high-energy structures and
their controlled manipulation, as well as the possibility of fundamental
physics experiments.Comment: 25 pages, 12 figures, 4 tables (RevTeX
Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture
This experiment was designed to study three determinant factors in decomposition patterns of soil organic matter (SOM): temperature, water and carbon (C) inputs. The study combined field measurements with soil lab incubations and ends with a modelling framework based on the results obtained. Soil respiration was periodically measured at an oak savanna woodland and a ponderosa pine plantation. Intact soils cores were collected at both ecosystems, including soils with most labile C burnt off, soils with some labile C gone and soils with fresh inputs of labile C. Two treatments, dry-field condition and field capacity, were applied to an incubation that lasted 111 days. Short-term temperature changes were applied to the soils periodically to quantify temperature responses. This was done to prevent confounding results associated with different pools of C that would result by exposing treatments chronically to different temperature regimes. This paper discusses the role of the above-defined environmental factors on the variability of soil C dynamics. At the seasonal scale, temperature and water were, respectively, the main limiting factors controlling soil CO2 efflux for the ponderosa pine and the oak savanna ecosystems. Spatial and seasonal variations in plant activity (root respiration and exudates production) exerted a strong influence over the seasonal and spatial variation of soil metabolic activity. Mean residence times of bulk SOM were significantly lower at the Nitrogen (N)-rich deciduous savanna than at the N-limited evergreen dominated pine ecosystem. At shorter time scales (daily), SOM decomposition was controlled primarily by temperature during wet periods and by the combined effect of water and temperature during dry periods. Secondary control was provided by the presence/absence of plant derived C inputs (exudation). Further analyses of SOM decomposition suggest that factors such as changes in the decomposer community, stress-induced changes in the metabolic activity of decomposers or SOM stabilization patterns remain unresolved, but should also be considered in future SOM decomposition studies. Observations and confounding factors associated with SOM decomposition patterns and its temperature sensitivity are summarized in the modeling framework