77 research outputs found

    Guillain-Barré syndrome: a century of progress

    Get PDF
    In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS

    Campylobacter Infection as a Trigger for Guillain-Barré Syndrome in Egypt

    Get PDF
    BACKGROUND: Most studies of Campylobacter infection triggering Guillain-Barré Syndrome (GBS) are conducted in western nations were Campylobacter infection and immunity is relatively rare. In this study, we explored Campylobacter infections, Campylobacter serotypes, autoantibodies to gangliosides, and GBS in Egypt, a country where Campylobacter exposure is common. METHODS: GBS cases (n = 133) were compared to age- and hospital-matched patient controls (n = 374). A nerve conduction study was performed on cases and a clinical history, serum sample, and stool specimen obtained for all subjects. RESULTS: Most (63.3%) cases were demyelinating type; median age four years. Cases were more likely than controls to have diarrhea (29.5% vs. 22.5%, Adjusted Odds Ratio (ORa) = 1.69, P = 0.03), to have higher geometric mean IgM anti-Campylobacter antibody titers (8.18 vs. 7.25 P<0.001), and to produce antiganglioside antibodies (e.g., anti-Gd1a, 35.3 vs. 11.5, ORa = 4.39, P<0.0001). Of 26 Penner:Lior Campylobacter serotypes isolated, only one (41:27, C. jejuni, P = 0.02) was associated with GBS. CONCLUSIONS: Unlike results from western nations, data suggested that GBS cases were primarily in the young and cases and many controls had a history of infection to a variety of Campylobacter serotypes. Still, the higher rates of diarrhea and greater antibody production against Campylobacter and gangliosides in GBS patients were consistent with findings from western countries

    Identification of Gene Networks and Pathways Associated with Guillain-Barré Syndrome

    Get PDF
    BACKGROUND: The underlying change of gene network expression of Guillain-Barré syndrome (GBS) remains elusive. We sought to identify GBS-associated gene networks and signaling pathways by analyzing the transcriptional profile of leukocytes in the patients with GBS. METHODS AND FINDINGS: Quantitative global gene expression microarray analysis of peripheral blood leukocytes was performed on 7 patients with GBS and 7 healthy controls. Gene expression profiles were compared between patients and controls after standardization. The set of genes that significantly correlated with GBS was further analyzed by Ingenuity Pathways Analyses. 256 genes and 18 gene networks were significantly associated with GBS (fold change ≥2, P<0.05). FOS, PTGS2, HMGB2 and MMP9 are the top four of 246 significantly up-regulated genes. The most significant disease and altered biological function genes associated with GBS were those involved in inflammatory response, infectious disease, and respiratory disease. Cell death, cellular development and cellular movement were the top significant molecular and cellular functions involved in GBS. Hematological system development and function, immune cell trafficking and organismal survival were the most significant GBS-associated function in physiological development and system category. Several hub genes, such as MMP9, PTGS2 and CREB1 were identified in the associated gene networks. Canonical pathway analysis showed that GnRH, corticotrophin-releasing hormone and ERK/MAPK signaling were the most significant pathways in the up-regulated gene set in GBS. CONCLUSIONS: This study reveals the gene networks and canonical pathways associated with GBS. These data provide not only networks between the genes for understanding the pathogenic properties of GBS but also map significant pathways for the future development of novel therapeutic strategies
    • …
    corecore