518 research outputs found
Interference coloration as an anti-predator defence
Interference coloration, in which the perceived colour varies predictably with the angle of illumination or observation, is extremely widespread across animal groups. However, despite considerable advances in our understanding of the mechanistic basis of interference coloration in animals, we still have a poor understanding of its function. Here, I show, using avian predators hunting dynamic virtual prey, that the presence of interference coloration can significantly reduce a predator's attack success. Predators required more pecks to successfully catch interference-coloured prey compared with otherwise identical prey items that lacked interference coloration, and attacks against prey with interference colours were less accurate, suggesting that changes in colour or brightness caused by prey movement hindered a predator's ability to pinpoint their exact location. The pronounced antipredator benefits of interference coloration may explain why it has evolved independently so many times. © 2015 The Author(s) Published by the Royal Society. All rights reserved
The increase of the functional entropy of the human brain with age
We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy
A cross validation of Consumer-Based Brand Equity (CBBE) with Private Labels in Spain
Molinillo,S., Ekinci, Y., Japutra, A. (2014)'A cross validation of Consumer-Based Brand Equity (CBBE) with Private Labels in Spain'. in Martínez-López, Gázquez-Abad, J.C. and Sethuraman, R. J.A. (eds.) Advances in National Brand and Private Label Marketing. Second International Conference, 2015. Springer Proceedings in Business and Economics, pp. 113-125In recent years a number of Consumer-Based Brand Equity (CBBE) models and measurement scales have been introduced in the branding literature. However, examinations of brand equity in Private Labels (PL) are rather limited. This study aims to compare the validity of the two prominent CBBE models those introduced by Yoo and Donthu (2001) and Nam et al. (2011). In order to test the models and make this comparison, the study collected data from 236 respondents who rated private labels in Spain. A list of 30 different fashion and sportswear PL was introduced to respondents. These brands do not make any reference to the retail store in which they are sold. Research findings suggest that the extended CBBE model introduced by Nam et al. (2011) and Ciftci et al. (2014) is more reliable and valid than Yoo and Donthu’s model for assessing PL. Theoretical contributions and managerial implications are discussed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Captive reptile mortality rates in the home and implications for the wildlife trade
The trade in wildlife and keeping of exotic pets is subject to varying levels of national and international regulation and is a topic often attracting controversy. Reptiles are popular exotic pets and comprise a substantial component of the live animal trade. High mortality of traded animals raises welfare concerns, and also has implications for conservation if collection from the wild is required to meet demand. Mortality of reptiles can occur at any stage of the trade chain from collector to consumer. However, there is limited information on mortality rates of reptiles across trade chains, particularly amongst final consumers in the home. We investigated mortality rates of reptiles amongst consumers using a specialised technique for asking sensitive questions, additive Randomised Response Technique (aRRT), as well as direct questioning (DQ). Overall, 3.6% of snakes, chelonians and lizards died within one year of acquisition. Boas and pythons had the lowest reported mortality rates of 1.9% and chameleons had the highest at 28.2%. More than 97% of snakes, 87% of lizards and 69% of chelonians acquired by respondents over five years were reported to be captive bred and results suggest that mortality rates may be lowest for captive bred individuals. Estimates of mortality from aRRT and DQ did not differ significantly which is in line with our findings that respondents did not find questions about reptile mortality to be sensitive. This research suggests that captive reptile mortality in the home is rather low, and identifies those taxa where further effort could be made to reduce mortality rate
Antibiotic treatment leads to the elimination of Wolbachia endosymbionts and sterility in the diplodiploid collembolan Folsomia candida
<p>Abstract</p> <p>Background</p> <p><it>Wolbachia </it>is an extremely widespread bacterial endosymbiont of arthropods and nematodes that causes a variety of reproductive peculiarities. Parthenogenesis is one such peculiarity but it has been hypothesised that this phenomenon may be functionally restricted to organisms that employ haplodiploid sex determination. Using two antibiotics, tetracycline and rifampicin, we attempted to eliminate <it>Wolbachia </it>from the diplodiploid host <it>Folsomia candida</it>, a species of springtail which is a widely used study organism.</p> <p>Results</p> <p>Molecular assays confirmed that elimination of <it>Wolbachia </it>was successfully achieved through continuous exposure of populations (over two generations and several weeks) to rifampicin administered as 2.7% dry weight of their yeast food source. The consequence of this elimination was total sterility of all individuals, despite the continuation of normal egg production.</p> <p>Conclusion</p> <p>Microbial endosymbionts play an obligatory role in the reproduction of their diplodiploid host, most likely one in which the parthenogenetic process is facilitated by <it>Wolbachia</it>. A hitherto unknown level of host-parasite interdependence is thus recorded.</p
Breast epithelial cell proliferation is markedly increased with short-term high levels of endogenous estrogen secondary to controlled ovarian hyperstimulation
Oocyte donors have high serum estradiol (E2) levels similar to the serum levels seen in the first trimester of pregnancy. We report in this article our studies comparing cell proliferation, Ki67 (MIB1), and estrogen and progesterone receptor levels (ERα, PRA, and PRB) in the breast terminal duct lobular units of oocyte donors, women in early pregnancy, and in normally cycling women. Breast tissue and blood samples were obtained from 10 oocyte donors, and 30 pregnant women at 5–18 weeks of gestation. Breast tissue samples were also obtained from 26 normally cycling women. In the oocyte donors: peak E2 (mean ~15,300 pmol/l) was reached on the day before oocyte (and tissue) donation; peak progesterone (P4; mean 36.3 nmol/l) was reached on the day of donation; Ki67 was positively associated with level of E2, and the mean Ki67 was 7.0% significantly greater than the mean 1.8% of cycling women. In the pregnant women: mean E2 rose from ~2,000 pmol/l at 5 weeks of gestation to ~27,000 pmol/l at 18 weeks; mean P4 did not change from ~40 nmol/l until around gestational week 11 when it increased to ~80 nmol/l; mean Ki67 was 15.4% and did not vary with gestational age or E2. Oocyte donors have greatly increased levels of E2 and of breast-cell proliferation, both comparable in the majority of donors to the levels seen in the first trimester of pregnancy. Whether their short durations of greatly increased E2 levels are associated with any long-term beneficial effects on the breast, as occurring in rodent models, is not known
Genetics of decayed sexual traits in a parasitoid wasp with endosymbiont-induced asexuality.
Trait decay may occur when selective pressures shift, owing to changes in environment or life style, rendering formerly adaptive traits non-functional or even maladaptive. It remains largely unknown if such decay would stem from multiple mutations with small effects or rather involve few loci with major phenotypic effects. Here, we investigate the decay of female sexual traits, and the genetic causes thereof, in a transition from haplodiploid sexual reproduction to endosymbiont-induced asexual reproduction in the parasitoid wasp Asobara japonica. We take advantage of the fact that asexual females cured of their endosymbionts produce sons instead of daughters, and that these sons can be crossed with sexual females. By combining behavioral experiments with crosses designed to introgress alleles from the asexual into the sexual genome, we found that sexual attractiveness, mating, egg fertilization and plastic adjustment of offspring sex ratio (in response to variation in local mate competition) are decayed in asexual A. japonica females. Furthermore, introgression experiments revealed that the propensity for cured asexual females to produce only sons (because of decayed sexual attractiveness, mating behavior and/or egg fertilization) is likely caused by recessive genetic effects at a single locus. Recessive effects were also found to cause decay of plastic sex-ratio adjustment under variable levels of local mate competition. Our results suggest that few recessive mutations drive decay of female sexual traits, at least in asexual species deriving from haplodiploid sexual ancestors
Invasion of Wolbachia into Anopheles and Other Insect Germlines in an Ex vivo Organ Culture System
The common bacterial endosymbiont Wolbachia manipulates its host's reproduction to promote its own maternal transmission, and can interfere with pathogen development in many insects making it an attractive agent for the control of arthropod-borne disease. However, many important species, including Anopheles mosquitoes, are uninfected. Wolbachia can be artificially transferred between insects in the laboratory but this can be a laborious and sometimes fruitless process. We used a simple ex vivo culturing technique to assess the suitability of Wolbachia-host germline associations. Wolbachia infects the dissected germline tissue of multiple insect species when the host tissue and bacteria are cultured together. Ovary and testis infection occurs in a density-dependent manner. Wolbachia strains are more capable of invading the germline of their native or closely related rather than divergent hosts. The ability of Wolbachia to associate with the germline of novel hosts is crucial for the development of stably-transinfected insect lines. Rapid assessment of the suitability of a strain-host combination prior to transinfection may dictate use of a particular Wolbachia strain. Furthermore, the cultured germline tissues of two major Anopheline vectors of Plasmodium parasites are susceptible to Wolbachia infection. This finding further enhances the prospect of using Wolbachia for the biological control of malaria
Genetics of decayed sexual traits in a parasitoid wasp with endosymbiont-induced asexuality
Trait decay may occur when selective pressures shift, owing to changes in environment or life style, rendering formerly adaptive traits non-functional or even maladaptive. It remains largely unknown if such decay would stem from multiple mutations with small effects or rather involve few loci with major phenotypic effects. Here, we investigate the decay of female sexual traits, and the genetic causes thereof, in a transition from haplodiploid sexual reproduction to endosymbiont-induced asexual reproduction in the parasitoid wasp Asobara japonica. We take advantage of the fact that asexual females cured of their endosymbionts produce sons instead of daughters, and that these sons can be crossed with sexual females. By combining behavioral experiments with crosses designed to introgress alleles from the asexual into the sexual genome, we found that sexual attractiveness, mating, egg fertilization and plastic adjustment of offspring sex ratio (in response to variation in local mate competition) are decayed in asexual A. japonica females. Furthermore, introgression experiments revealed that the propensity for cured asexual females to produce only sons (because of decayed sexual attractiveness, mating behavior and/or egg fertilization) is likely caused by recessive genetic effects at a single locus. Recessive effects were also found to cause decay of plastic sex-ratio adjustment under variable levels of local mate competition. Our results suggest that few recessive mutations drive decay of female sexual traits, at least in asexual species deriving from haplodiploid sexual ancestors
Staging the city: London at the fin de siècle and the crisis of representation
Staging the city: London at the fin de siècle and the crisis of representatio
- …