216 research outputs found

    The importance of Portuguese Continental Shelf Waters to Balearic Shearwaters revealed by aerial census

    Get PDF
    The Balearic shearwater Puffinus mauretanicus is one of the most threatened seabirds in the world. To evaluate the abundance and distribution of Balearic Shearwaters in Portuguese Continental Shelf Waters, during the post-breeding period when migrating birds are outside the Mediterranean Sea, we conducted 5 aerial surveys between 2010 and 2014 (21 survey days covering 62,716 km2). Following a line transect method, observers recorded a total of 181 Balearic Shearwaters sightings. Using Distance sampling software, we estimated an overall species abundance (2010–2014) of 10,182, ranging between 2338 in 2010 and 23,221 individuals in 2012. During the 2012 post-breeding period, the Portuguese Continental Shelf Waters were used by up to 96.8% of the latest migratory population assessment. Considering Balearic Shearwater estimates per sampling block, there was a preference for the North and Center sectors of the Portuguese coast (respectively, 7058 and 1366 individuals) where several SPAs were already designated. We computed the annual and overall habitat predictive models for Balearic Shearwaters using a maximum entropy algorithm on MaxEnt software. In all models, the Balearic shearwater distribution was best predicted by mean chlorophyll concentration. Balearic Shearwaters are mostly present in shallow shelf and coastal waters particularly in the widest portions of the continental shelf. These areas are strongly influenced by upwelling, which concurs with the chlorophyll concentration being the most important predicting variable. Portuguese Continental Shelf Waters are one of the most important post-breeding grounds to the Balearic ShearwaterPortuguese Wildlife Society and projects SafeSea EEA-Grants, FAME (Proj. 2009-1/089) and European Commission’s Life Programme (MarPro NAT/PT/00038). This study was also partly supported by the Portuguese Foundation for Science and Technology (FCT) with Grants SFRH/ BD/30240/2006 to M. Ferreira and SFRH/BD/32841/2006 to P. C. Rodrigues. C. Eira is supported by FCT through CESAM UID/AMB/50017/2013 co-funded by FCT/MEC and FEDER, within PT2020 and Compete 2020 and S. Monteiro is financed by a Grant (BPD/0043/AMB/50017) from UID/AMB/50017/2013. This work was also partially supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by FCT and by ERDF (COMPETE2020). The authors thank observers and airplane pilots who contributed to this workinfo:eu-repo/semantics/publishedVersio

    A multi-scale modelling framework to guide management of plant invasions in a transboundary context

    Get PDF
    Background Attention has recently been drawn to the issue of transboundary invasions, where species introduced and naturalized in one country cross international borders and become problematic in neighbouring countries. Robust modelling frameworks, able to identify the environmental drivers of invasion and forecast the current and future potential distribution of invasive species, are needed to study and manage invasions. Limitations due to the lack of species distribution and environmental data, or assumptions of modelling tools, often constrain the reliability of model predictions. Methods We present a multiscale spatial modelling framework for transboundary invasions, incorporating robust modelling frameworks (Multimodel Inference and Ensemble Modelling) to overcome some of the limitations. The framework is illustrated using Hakea sericea Schrad. (Proteaceae), a shrub or small tree native to Australia and invasive in several regions of the world, including the Iberian Peninsula. Two study scales were considered: regional scale (western Iberia, including mainland Portugal and Galicia) and local scale (northwest Portugal). At the regional scale, the relative importance of environmental predictors sets was evaluated and ranked to determine the main general drivers for the species distribution, while the importance of each environmental predictor was assessed at the local scale. The potential distribution of H. sericea was spatially projected for both scale areas. Results Model projections for western Iberia suggest that a large area is environmentally suitable in both Portugal and Spain. Climate and landscape composition sets were the most important determinants of this regional distribution of the species. Conversely, a geological predictor (schist lithology) was more important in explaining its local-scale distribution. Conclusions After being introduced to Portugal, H. sericea has become a transboundary invader by expanding in parts of Galicia (Spain). The fact that a larger area is predicted as environmentally suitable in Spain raises concerns regarding its potential continued expansion. This highlights the importance of transboundary cooperation in the early management of invasions. By reliably identifying drivers and providing spatial projections of invasion at multiple scales, this framework provides insights for the study and management of biological invasions, including the assessment of transboundary invasion risk.This work was funded by FEDER funds through the Operational Programme for Competitiveness Factors - COMPETE and by National Funds through FCT - Foundation for Science and Technology under the project PTDC/AAGMAA/4539/2012 / FCOMP-01-0124-FEDER-027863 (IND_CHANGE). J. Vicente is supported by POPH/FSE funds and by National Funds through FCT - Foundation for Science and Technology through Post-doctoral grant SFRH/BPD/84044/2012. D.M. Richardson acknowledges support from the DST-NRF Centre of Excellence for Invasion Biology and the National Research Foundation (grant 85417).info:eu-repo/semantics/publishedVersio

    Why Are Some Plant Genera More Invasive Than Others?

    Get PDF
    Determining how biological traits are related to the ability of groups of organisms to become economically damaging when established outside of their native ranges is a major goal of population biology, and important in the management of invasive species. Little is known about why some taxonomic groups are more likely to become pests than others among plants. We investigated traits that discriminate vascular plant genera, a level of taxonomic generality at which risk assessment and screening could be more effectively performed, according to the proportion of naturalized species which are pests. We focused on the United States and Canada, and, because our purpose is ultimately regulatory, considered species classified as weeds or noxious. Using contingency tables, we identified 11 genera of vascular plants that are disproportionately represented by invasive species. Results from boosted regression tree analyses show that these categories reflect biological differences. In summary, approximately 25% of variation in genus proportions of weeds or noxious species was explained by biological covariates. Key explanatory traits included genus means for wetland habitat affinity, chromosome number, and seed mass

    Use of Arthropod Rarity for Area Prioritisation: Insights from the Azorean Islands

    Get PDF
    We investigated the conservation concern of Azorean forest fragments and the entire Terceira Island surface using arthropod species vulnerability as defined by the Kattan index, which is based on species rarity. Species rarity was evaluated according to geographical distribution (endemic vs. non endemic species), habitat specialization (distribution across biotopes) and population size (individuals collected in standardized samples). Geographical rarity was considered at ‘global’ scale (species endemic to the Azorean islands) and ‘regional’ scale (single island endemics)

    Do Stacked Species Distribution Models Reflect Altitudinal Diversity Patterns?

    Get PDF
    The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six modelling techniques. We combined all of the predictions for the same species in ensemble models based on two different criteria: the average of the rescaled predictions by all techniques and the average of the best techniques. The rescaled predictions were then reclassified into binary predictions (presence/absence). By stacking either the original predictions or binary predictions for both ensemble procedures, we obtained four different species richness models per taxa. The gamma and alpha diversity per elevation band (500 m) was also computed. To evaluate the prediction abilities for the four predictions of species richness and gamma diversity, the models were compared with the real data along an elevation gradient that was independently compiled by specialists. Finally, we also tested whether our richness models performed better than a null model of altitudinal changes of diversity based on the literature. Stacking of the ensemble prediction of the individual species models generated richness models that proved to be well correlated with the observed alpha diversity richness patterns along elevation and with the gamma diversity derived from the literature. Overall, these models tend to overpredict species richness. The use of the ensemble predictions from the species models built with different techniques seems very promising for modelling of species assemblages. Stacking of the binary models reduced the over-prediction, although more research is needed. The randomisation test proved to be a promising method for testing the performance of the stacked models, but other implementations may still be developed

    Why Do Species Co-Occur? A Test of Alternative Hypotheses Describing Abiotic Differences in Sympatry versus Allopatry Using Spadefoot Toads

    Get PDF
    Areas of co-occurrence between two species (sympatry) are often thought to arise in regions where abiotic conditions are conducive to both species and are therefore intermediate between regions where either species occurs alone (allopatry). Depending on historical factors or interactions between species, however, sympatry might not differ from allopatry, or, alternatively, sympatry might actually be more extreme in abiotic conditions relative to allopatry. Here, we evaluate these three hypothesized patterns for how sympatry compares to allopatry in abiotic conditions. We use two species of congeneric spadefoot toads, Spea multiplicata and S. bombifrons, as our study system. To test these hypotheses, we created ecological niche models (specifically using Maxent) for both species to create a map of the joint probability of occurrence of both species. Using the results of these models, we identified three types of locations: two where either species was predicted to occur alone (i.e., allopatry for S. multiplicata and allopatry for S. bombifrons) and one where both species were predicted to co-occur (i.e., sympatry). We then compared the abiotic environment between these three location types and found that sympatry was significantly hotter and drier than the allopatric regions. Thus, sympatry was not intermediate between the alternative allopatric sites. Instead, sympatry occurred at one extreme of the conditions occupied by both species. We hypothesize that biotic interactions in these extreme environments facilitate co-occurrence. Specifically, hybridization between S. bombifrons females and S. multiplicata males may facilitate co-occurrence by decreasing development time of tadpoles. Additionally, the presence of alternative food resources in more extreme conditions may preclude competitive exclusion of one species by the other. This work has implications for predicting how interacting species will respond to climate change, because species interactions may facilitate survival in extreme habitats

    A GIS Model Predicting Potential Distributions of a Lineage: A Test Case on Hermit Spiders (Nephilidae: Nephilengys)

    Get PDF
    BACKGROUND: Although numerous studies model species distributions, these models are almost exclusively on single species, while studies of evolutionary lineages are preferred as they by definition study closely related species with shared history and ecology. Hermit spiders, genus Nephilengys, represent an ecologically important but relatively species-poor lineage with a globally allopatric distribution. Here, we model Nephilengys global habitat suitability based on known localities and four ecological parameters. METHODOLOGY/PRINCIPAL FINDINGS: We geo-referenced 751 localities for the four most studied Nephilengys species: N. cruentata (Africa, New World), N. livida (Madagascar), N. malabarensis (S-SE Asia), and N. papuana (Australasia). For each locality we overlaid four ecological parameters: elevation, annual mean temperature, annual mean precipitation, and land cover. We used linear backward regression within ArcGIS to select two best fit parameters per species model, and ModelBuilder to map areas of high, moderate and low habitat suitability for each species within its directional distribution. For Nephilengys cruentata suitable habitats are mid elevation tropics within Africa (natural range), a large part of Brazil and the Guianas (area of synanthropic spread), and even North Africa, Mediterranean, and Arabia. Nephilengys livida is confined to its known range with suitable habitats being mid-elevation natural and cultivated lands. Nephilengys malabarensis, however, ranges across the Equator throughout Asia where the model predicts many areas of high ecological suitability in the wet tropics. Its directional distribution suggests the species may potentially spread eastwards to New Guinea where the suitable areas of N. malabarensis largely surpass those of the native N. papuana, a species that prefers dry forests of Australian (sub)tropics. CONCLUSIONS: Our model is a customizable GIS tool intended to predict current and future potential distributions of globally distributed terrestrial lineages. Its predictive potential may be tested in foreseeing species distribution shifts due to habitat destruction and global climate change

    Climate Change Hastens the Conservation Urgency of an Endangered Ungulate

    Get PDF
    Global climate change appears to be one of the main threats to biodiversity in the near future and is already affecting the distribution of many species. Currently threatened species are a special concern while the extent to which they are sensitive to climate change remains uncertain. Przewalski's gazelle (Procapra przewalskii) is classified as endangered and a conservation focus on the Qinghai-Tibetan Plateau. Using measures of species range shift, we explored how the distribution of Przewalski's gazelle may be impacted by projected climate change based on a maximum entropy approach. We also evaluated the uncertainty in the projections of the risks arising from climate change. Modeling predicted the Przewalski's gazelle would be sensitive to future climate change. As the time horizon increased, the strength of effects from climate change increased. Even assuming unlimited dispersal capacity of gazelles, a moderate decrease to complete loss of range was projected by 2080 under different thresholds for transforming the probability prediction to presence/absence data. Current localities of gazelles will undergo a decrease in their occurrence probability. Projections of the impacts of climate change were significantly affected by thresholds and general circulation models. This study suggests climate change clearly poses a severe threat and increases the extinction risk to Przewalski's gazelle. Our findings 1) confirm that endangered endemic species is highly vulnerable to climate change and 2) highlight the fact that forecasting impacts of climate change needs an assessment of the uncertainty. It is extremely important that conservation strategies consider the predicted geographical shifts and be planned with full knowledge of the reliability of projected impacts of climate change

    Time since Introduction, Seed Mass, and Genome Size Predict Successful Invaders among the Cultivated Vascular Plants of Hawaii

    Get PDF
    Extensive economic and environmental damage has been caused by invasive exotic plant species in many ecosystems worldwide. Many comparative studies have therefore attempted to predict, from biological traits, which species among the pool of naturalized non-natives become invasive. However, few studies have investigated which species establish and/or become pests from the larger pool of introduced species and controlled for time since introduction. Here we present results from a study aimed at quantifying predicting three classes of invasive species cultivated in Hawaii. Of 7,866 ornamental species cultivated in Hawaii between 1840 and 1999, 420 (5.3%) species naturalized, 141 (1.8%) have been classified as weeds, and 39 (0.5%) were listed by the state of Hawaii as noxious. Of the 815 species introduced >80 years ago, 253 (31%) have naturalized, 90 (11%) are classed as weeds, and 22 (3%) as noxious by the state of Hawaii. Using boosted regression trees we classified each group with nearly 90% accuracy, despite incompleteness of data and the low proportion of naturalized or pest species. Key biological predictors were seed mass and highest chromosome number standardized by genus which, when data on residence time was removed, were able to predict all three groups with 76–82% accuracy. We conclude that, when focused on a single region, screening for potential weeds or noxious plants based on a small set of biological traits can be achieved with sufficient accuracy for policy and management purposes
    corecore