1,070 research outputs found

    Measuring change in vulnerable adolescents: Findings from a peer education evaluation in South Africa

    Get PDF
    Introduction: In the context of poverty and HIV and AIDS, peer education is thought to be capable of providing vulnerable youth with psychosocial support as well as information and decision-making skills otherwise limited by scarce social and material resources. As a preventative education intervention method, peer education is a strategy aimed at norms and peer group influences that affect health behaviours and attitudes. However, too few evaluations of peer-led programmes are available,and they frequently fail to reflect real differences between those who have been recipients of peer education and those who have not. This article reports on an evaluation of a pilot peer-led intervention, entitled Vhutshilo, implemented on principles agreed upon through a collaborative effort in South Africa by the Harvard School of Public Health and the Centre for theSupport of Peer Education (the Rutanang collaboration). Vhutshilo targeted vulnerable adolescents aged 14–16 years living in some of South Africa’s under-resourced communities. Methodology: The research design was a mixed-method (qualitative and quantitative), longitudinal, quasi-experimental evaluation. Tools used included a quantitative survey questionnaire (n ¼ 183) and semi-structured interviews (n ¼ 32) with beneficiaries of peer education. Surveys were administered twice forbeneficiaries of peer education (n ¼ 73), immediately after completion of the programme (post-test) and 4 months later (delayed post-test), and once for control group members (n ¼ 110). The three main  methodological limitations in this study were the use of a once-off control group assessment as the baseline for comparison, without a pre-test, due to timing and resource constraints; a small sample size (n ¼ 183), which reduced the statistical power of the evaluation; and the unavailability of existing tested survey questions to measure the impact of peer education and its role in behaviour change. Findings: This article reports on the difficulties of designing a comprehensive evaluation within time and financial constraints, critically evaluates survey design with multi-item indicators, and discusses six statistically significant changes observed in Vhutshilo participants out of a 92-point survey. Youth struggling with poor quality education and living in economically fraught contexts with little social support, nonetheless, showed evidence of having greater knowledge of support networks and an expanded emotional repertoire by the end of the Vhutshilo programme, and 4 months later. At both individual and group level, many with low socio-economic status showed great improvement with regard to programme indicator scores. Conclusion: For the poorest adolescents, especially those living in the rural parts of South Africa, peer education has the potential to change future orientation, attitudes and knowledge regarding HIV and AIDS, including an intolerance for multiple concurrent partnerships. When well organised and properly supported, peer education programmes (and the Vhutshilo curriculum, in particular) provide vulnerable youth with opportunities to develop  psychosocial skills and informational resources that contribute to the changing of norms, attitudes and behaviours. However, the article also flags the need for effective peer education evaluations that take into account limited financial resources and that possess tested indicators of programme effectiveness

    Many-body localization in a quantum simulator with programmable random disorder

    Get PDF
    When a system thermalizes it loses all local memory of its initial conditions. This is a general feature of open systems and is well described by equilibrium statistical mechanics. Even within a closed (or reversible) quantum system, where unitary time evolution retains all information about its initial state, subsystems can still thermalize using the rest of the system as an effective heat bath. Exceptions to quantum thermalization have been predicted and observed, but typically require inherent symmetries or noninteracting particles in the presence of static disorder. The prediction of many-body localization (MBL), in which disordered quantum systems can fail to thermalize in spite of strong interactions and high excitation energy, was therefore surprising and has attracted considerable theoretical attention. Here we experimentally generate MBL states by applying an Ising Hamiltonian with long-range interactions and programmably random disorder to ten spins initialized far from equilibrium. We observe the essential signatures of MBL: memory retention of the initial state, a Poissonian distribution of energy level spacings, and entanglement growth in the system at long times. Our platform can be scaled to higher numbers of spins, where detailed modeling of MBL becomes impossible due to the complexity of representing such entangled quantum states. Moreover, the high degree of control in our experiment may guide the use of MBL states as potential quantum memories in naturally disordered quantum systems.Comment: 9 pages, 9 figure

    Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans

    Get PDF
    The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid nematode genomes

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    Social representations and the politics of participation

    Get PDF
    Recent work has called for the integration of different perspectives into the field of political psychology (Haste, 2012). This chapter suggests that one possible direction that such efforts can take is studying the role that social representations theory (SRT) can play in understanding political participation and social change. Social representations are systems of common-sense knowledge and social practice; they provide the lens through which to view and create social and political realities, mediate people's relations with these sociopolitical worlds and defend cultural and political identities. Social representations are therefore key for conceptualising participation as the activity that locates individuals and social groups in their sociopolitical world. Political participation is generally seen as conditional to membership of sociopolitical groups and therefore is often linked to citizenship. To be a citizen of a society or a member of any social group one has to participate as such. Often political participation is defined as the ability to communicate one's views to the political elite or to the political establishment (Uhlaner, 2001), or simply explicit involvement in politics and electoral processes (Milbrath, 1965). However, following scholars on ideology (Eagleton, 1991; Thompson, 1990) and social knowledge (Jovchelovitch, 2007), we extend our understanding of political participation to all social relations and also develop a more agentic model where individuals and groups construct, develop and resist their own views, ideas and beliefs. We thus adopt a broader approach to participation in comparison to other political-psychological approaches, such as personality approaches (e.g. Mondak and Halperin, 2008) and cognitive approaches or, more recently, neuropsychological approaches (Hatemi and McDermott, 2012). We move away from a focus on the individual's political behaviour and its antecedents and outline an approach that focuses on the interaction between psychological and political phenomena (Deutsch and Kinnvall, 2002) through examining the politics of social knowledge

    Summary statistics in auditory perception

    Get PDF
    Sensory signals are transduced at high resolution, but their structure must be stored in a more compact format. Here we provide evidence that the auditory system summarizes the temporal details of sounds using time-averaged statistics. We measured discrimination of 'sound textures' that were characterized by particular statistical properties, as normally result from the superposition of many acoustic features in auditory scenes. When listeners discriminated examples of different textures, performance improved with excerpt duration. In contrast, when listeners discriminated different examples of the same texture, performance declined with duration, a paradoxical result given that the information available for discrimination grows with duration. These results indicate that once these sounds are of moderate length, the brain's representation is limited to time-averaged statistics, which, for different examples of the same texture, converge to the same values with increasing duration. Such statistical representations produce good categorical discrimination, but limit the ability to discern temporal detail.Howard Hughes Medical Institut

    Radiation damping optical enhancement in cold atoms

    Get PDF
    This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/Open Access journalThe typically tiny effect of radiation damping on a moving body can be amplified to a favorable extent by exploiting the sharp reflectivity slope at one edge of an optically induced stop-band in atoms loaded into an optical lattice. In this paper, this phenomenon is demonstrated for the periodically trapped and coherently driven cold 87Rb atoms, where radiation damping might be much larger than that anticipated in previous proposals and become comparable with radiation pressure. Such an enhancement could be observed even at speeds of only a few meters per second with less than 1.0% absorption, making radiation damping experimentally accessible

    Strongly magnetized pulsars: explosive events and evolution

    Full text link
    Well before the radio discovery of pulsars offered the first observational confirmation for their existence (Hewish et al., 1968), it had been suggested that neutron stars might be endowed with very strong magnetic fields of 101010^{10}-101410^{14}G (Hoyle et al., 1964; Pacini, 1967). It is because of their magnetic fields that these otherwise small ed inert, cooling dead stars emit radio pulses and shine in various part of the electromagnetic spectrum. But the presence of a strong magnetic field has more subtle and sometimes dramatic consequences: In the last decades of observations indeed, evidence mounted that it is likely the magnetic field that makes of an isolated neutron star what it is among the different observational manifestations in which they come. The contribution of the magnetic field to the energy budget of the neutron star can be comparable or even exceed the available kinetic energy. The most magnetised neutron stars in particular, the magnetars, exhibit an amazing assortment of explosive events, underlining the importance of their magnetic field in their lives. In this chapter we review the recent observational and theoretical achievements, which not only confirmed the importance of the magnetic field in the evolution of neutron stars, but also provide a promising unification scheme for the different observational manifestations in which they appear. We focus on the role of their magnetic field as an energy source behind their persistent emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of "NewCompStar" European COST Action MP1304, 43 pages, 8 figure
    corecore