13 research outputs found
Effects of temperature in juvenile seabass (Dicentrarchus labrax L.) biomarker responses and behaviour: implications for environmental monitoring
The effects of temperature on European seabass
(Dicentrarchus labrax L.) juveniles were investigated using
a 30-day bioassay carried out at 18 and 25 °C in laboratory
conditions. A multiparameter approach was applied including
fish swimming velocity and several biochemical parameters
involved in important physiological functions. Fish exposed for
four weeks to 25 °C showed a decreased swimming capacity,
concomitant with increased oxidative stress (increased catalase
and glutathione peroxidase activities) and damage (increased
lipid peroxidation levels), increased activity of an enzyme
involved in energy production through the aerobic pathway
(isocitrate dehydrogenase) and increased activities of brain and
muscle cholinesterases (neurotransmission) compared to fish
kept at 18 °C. Globally, these findings indicate that basic
functions, essential for juvenile seabass surviving and well
performing in the wild, such as predation, predator avoidance,
neurofunction and ability to face chemical stress may be compromised
with increasing water temperature. This may be of
particular concern if D. labrax recruitment phase in northwest
European estuaries and coastal areas happens gradually inmore
warm environments as a consequence of global warming.
Considering that the selected endpoints are generally applied
in monitoring studies with different species, these findings also
highlight the need of more research, including interdisciplinary
and multiparameter approaches, on the impacts of temperature
on marine species, and stress the importance of considering
scenarios of temperature increase in environmental monitoring
and in marine ecological risk assessment