59 research outputs found
Linkage study of 14 candidate genes and loci in four large Dutch families with vesico-ureteral reflux
Vesico-ureteral reflux (VUR) is a major contributing factor to end-stage renal disease in paediatric patients. Primary VUR is a familial disorder, but little is known about its genetic causes. To investigate the involvement of 12 functional candidate genes and two reported loci in VUR, we performed a linkage study in four large, Dutch, multi-generational families with multiple affected individuals. We were unable to detect linkage to any of the genes and loci and could exclude the GDNF, RET, SLIT2, SPRY1, PAX2, AGTR2, UPK1A and UPK3A genes and the 1p13 and 20p13 loci from linkage to VUR. Our results provide further evidence that there appears to be genetic heterogeneity in VUR
Linkage study of 14 candidate genes and loci in four large Dutch families with vesico-ureteral reflux
Vesico-ureteral reflux (VUR) is a major contributing factor to end-stage renal disease in paediatric patients. Primary VUR is a familial disorder, but little is known about its genetic causes. To investigate the involvement of 12 functional candidate genes and two reported loci in VUR, we performed a linkage study in four large, Dutch, multi-generational families with multiple affected individuals. We were unable to detect linkage to any of the genes and loci and could exclude the GDNF, RET, SLIT2, SPRY1, PAX2, AGTR2, UPK1A and UPK3A genes and the 1p13 and 20p13 loci from linkage to VUR. Our results provide further evidence that there appears to be genetic heterogeneity in VUR
cDNA Immunization of Mice with Human Thyroglobulin Generates Both Humoral and T Cell Responses: A Novel Model of Thyroid Autoimmunity
Thyroglobulin (Tg) represents one of the largest known self-antigens involved in autoimmunity. Numerous studies have implicated it in triggering and perpetuating the autoimmune response in autoimmune thyroid diseases (AITD). Indeed, traditional models of autoimmune thyroid disease, experimental autoimmune thyroiditis (EAT), are generated by immunizing mice with thyroglobulin protein in conjunction with an adjuvant, or by high repeated doses of Tg alone, without adjuvant. These extant models are limited in their experimental flexibility, i.e. the ability to make modifications to the Tg used in immunizations. In this study, we have immunized mice with a plasmid cDNA encoding the full-length human Tg (hTG) protein, in order to generate a model of Hashimoto's thyroiditis which is closer to the human disease and does not require adjuvants to breakdown tolerance. Human thyroglobulin cDNA was injected and subsequently electroporated into skeletal muscle using a square wave generator. Following hTg cDNA immunizations, the mice developed both B and T cell responses to Tg, albeit with no evidence of lymphocytic infiltration of the thyroid. This novel model will afford investigators the means to test various hypotheses which were unavailable with the previous EAT models, specifically the effects of hTg sequence variations on the induction of thyroiditis
The Ionizing Radiation-Induced Bystander Effect: Evidence, Mechanism, and Significance
It has long been considered that the important biological effects of ionizing radiation are a direct consequence of unrepaired or misrepaired DNA damage occurring in the irradiated cells. It was presumed that no effect would occur in cells in the population that receive no direct radiation exposure. However, in vitro evidence generated over the past two decades has indicated that non-targeted cells in irradiated cell cultures also experience significant biochemical and phenotypic changes that are often similar to those observed in the targeted cells. Further, nontargeted tissues in partial body-irradiated rodents also experienced stressful effects, including oxidative and oncogenic effects. This phenomenon, termed the “bystander response,” has been postulated to impact both the estimation of health risks of exposure to low doses/low fluences of ionizing radiation and the induction of second primary cancers following radiotherapy. Several mechanisms involving secreted soluble factors, oxidative metabolism, gap-junction intercellular communication, and DNA repair, have been proposed to regulate radiation-induced bystander effects. The latter mechanisms are major mediators of the system responses to ionizing radiation exposure, and our knowledge of the biochemical and molecular events involved in these processes is reviewed in this chapter
- …