407 research outputs found

    Low Handgrip Strength Is Not Associated with Type 2 Diabetes Mellitus and Hyperglycemia: a Population-Based Study.

    Get PDF
    This is the final version. Available from The Korean Society of Clinical Nutrition via the DOI in this record. Type 2 diabetes mellitus (DM) is commonly linked to muscle weakness and metabolic abnormalities which increase healthcare costs. The study was undertaken to investigate if low handgrip strength, as a marker of muscle weakness, is associated with hyperglycemia and/or DM in Brazilian subjects. In a cross-sectional design, 415 individuals of both sexes (46.7% male) were interviewed by a questionnaire and the DM diagnostic was self-reported. Anthropometric measurements, such as weight, height, body mass index (BMI), arm circumference, mid-arm and calf circumference and handgrip strength, were obtained by trained nutritionists. Blood glucose concentrations were determined by portable monitor analysis. Student's t-test was applied to compare DM cases with non-diabetic individuals, and logistic regression analysis was performed to verify the odds for becoming diabetic or having altered glycemia and p < 0.05 was considered as significant. From 415 subjects, 9.2% (n = 35) were classified as DM. DM patients had significantly higher age, BMI, casual glycemia and lower handgrip strength and normalized (to body weight) handgrip strength (NHS) when compared with non-diabetic patients. Individuals with low NHS have 2.7 odds ratio to DM without adjustment for covariate (crude model, p = 0.006) and have 2.7 times higher the likelihood of DM than individuals with high NHS after adjusting for age (model 1, p = 0.006); however, this association disappeared after further adjusting for sex. In conclusion, low handgrip strength normalized or not to body weight, was not associated with hyperglycemia and DM diagnosis.Cape

    Short-Term Creatine Supplementation May Alleviate the Malnutrition-Inflammation Score and Lean Body Mass Loss in Hemodialysis Patients: A Pilot Randomized Placebo-Controlled Trial

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordBackground Creatine supplementation has been proposed to alleviate muscle loss in various populations, but has not been investigated in hemodialysis (HD) patients. Thus, our objective was to evaluate whether creatine supplementation could attenuate the loss of lean body mass (LBM) and malnutrition‐inflammation score (MIS) in HD patients. Methods A randomized, placebo‐controlled, double blind, parallel‐design study included HD patients, of both sexes, aged 18–59 years. The patients were allocated to a Placebo Group (PG; n = 15; received maltodextrin, 1st week: 40 g/day and 2nd–4th weeks: 10 g/day) and a Creatine Group (CG; n = 15; received creatine plus maltodextrin, 1st week: 20 g/day of creatine plus 20 g/day of maltodextrin and 2nd–4th weeks: 5 g/day of creatine plus 5 g/day of maltodextrin). Pre and post the intervention, patients were evaluated for food intake, MIS, body composition and biochemical parameters. Results CG group attenuated the MIS (Pre: 5.57 ± 0.72 vs. Post: 3.85 ± 0.47 score, P = 0.003) compared with PG (Pre: 5.71 ± 0.97 vs. Post: 5.36 ± 0.95 score, P = 0.317) (supplement × time P = 0.017, effect size: 0.964). The change of LBM was greater in CG than in PG (CG: Δ0.95 vs PG: Δ0.13 kg). At post‐intervention, 28.6% of PG patients presented LBM loss and 71.4% remain stable. In contrast, 14.4% of CG patients had LBM loss, 42.8% remain stable and 42.8% gained. Food intake and quality of life did not change. CG increased the BMI and gait speed in post‐compared to pre‐moment, but no difference among the groups. Conclusion In HD patients, four weeks of creatine supplementation may alleviate the MIS as well as attenuate the LBM loss compared to placeboCapes, Brazi

    BR-BCSC Signature: The Cancer Stem Cell Profile Enriched in Brain Metastases that Predicts a Worse Prognosis in Lymph Node-Positive Breast Cancer

    Get PDF
    Brain metastases remain an unmet clinical need in breast oncology, being frequently found in HER2-overexpressing and triple-negative carcinomas. These tumors were reported to be highly cancer stem-like cell-enriched, suggesting that brain metastases probably arise by the seeding of cancer cells with stem features. Accordingly, we found that brain-tropic breast cancer cells show increased stem cell activity and tumorigenic capacity in the chick embryo choriallantoic membrane when compared to the parental cell line. These observations were supported by a significant increase in their stem cell frequency and by the enrichment for the breast cancer stem cell (BCSC) phenotype CD44+CD24-/low. Based on this data, the expression of BCSC markers (CD44, CD49f, P-cadherin, EpCAM, and ALDH1) was determined and found to be significantly enriched in breast cancer brain metastases when compared to primary tumors. Therefore, a brain (BR)-BCSC signature was defined (3-5 BCSC markers), which showed to be associated with decreased brain metastases-free and overall survival. Interestingly, this signature significantly predicted a worse prognosis in lymph node-positive patients, acting as an independent prognostic factor. Thus, an enrichment of a BCSC signature was found in brain metastases, which can be used as a new prognostic factor in clinically challenging breast cancer patients.This work was funded by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE 2020 Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by FCT (Fundação para a Ciência e a Tecnologia) Ministério da Ciência, Tecnologia e Ensino Superior under the projects Pest-C/SAU/LA0003/2013, NORTE-01-0145-FEDER-000029, SAICTPAC/0022/2015 POCI—01-0145-FEDER-016390, and FCT/02/SAICT/2017/030625. A Novartis Oncology grant also funded part of the work, namely, the characterization of the Portuguese series of human brain metastases. FCT funded the research grant of R.C. (SFRH/BD/135831/2018). IPATIMUP integrates the i3S Research Unit, which is partially supported by FCT in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274)

    Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects

    Get PDF
    A three year field study (2007-2009) of the diversity and numbers of the total and metabolically active free-living diazotophic bacteria and total bacterial communities in organic and conventionally managed agricultural soil was conducted at the Nafferton Factorial Systems Comparison (NFSC) study, in northeast England. The result demonstrated that there was no consistent effect of either organic or conventional soil management across the three years on the diversity or quantity of either diazotrophic or total bacterial communities. However, ordination analyses carried out on data from each individual year showed that factors associated with the different fertility management measures including availability of nitrogen species, organic carbon and pH, did exert significant effects on the structure of both diazotrophic and total bacterial communities. It appeared that the dominant drivers of qualitative and quantitative changes in both communities were annual and seasonal effects. Moreover, regression analyses showed activity of both communities was significantly affected by soil temperature and climatic conditions. The diazotrophic community showed no significant change in diversity across the three years, however, the total bacterial community significantly increased in diversity year on year. Diversity was always greatest during March for both diazotrophic and total bacterial communities. Quantitative analyses using qPCR of each community indicated that metabolically active diazotrophs were highest in year 1 but the population significantly declined in year 2 before recovering somewhat in the final year. The total bacterial population in contrast increased significantly each year. Seasonal effects were less consistent in this quantitative study

    Parental transfer of the antimicrobial protein LBP/BPI protects Biomphalaria glabrata eggs against oomycete infections

    Get PDF
    Copyright: © 2013 Baron et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was funded by ANR (ANR-07-BLAN-0214 and ANR-12-EMMA-00O7-01), CNRS and INRA. PvW was financially supported by the BBSRC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Gut-central nervous system axis is a target for nutritional therapies

    Get PDF
    Historically, in the 1950s, the chemist Linus Pauling established a relationship between decreased longevity and obesity. At this time, with the advent of studies involving the mechanisms that modulate appetite control, some researchers observed that the hypothalamus is the "appetite centre" and that peripheral tissues have important roles in the modulation of gut inflammatory processes and levels of hormones that control food intake. Likewise, the advances of physiological and molecular mechanisms for patients with obesity, type 2 diabetes mellitus, inflammatory bowel diseases, bariatric surgery and anorexia-associated diseases has been greatly appreciated by nutritionists. Therefore, this review highlights the relationship between the gut-central nervous system axis and targets for nutritional therapies

    Assessing the ecological risks from the persistence and spread of feral populations of insect-resistant transgenic maize

    Get PDF
    One source of potential harm from the cultivation of transgenic crops is their dispersal, persistence and spread in non-agricultural land. Ecological damage may result from such spread if the abundance of valued species is reduced. The ability of a plant to spread in non-agricultural habitats is called its invasiveness potential. The risks posed by the invasiveness potential of transgenic crops are assessed by comparing in agronomic field trials the phenotypes of the crops with the phenotypes of genetically similar non-transgenic crops known to have low invasiveness potential. If the transgenic and non-transgenic crops are similar in traits believed to control invasiveness potential, it may be concluded that the transgenic crop has low invasiveness potential and poses negligible ecological risk via persistence and spread in non-agricultural habitats. If the phenotype of the transgenic crop is outside the range of the non-transgenic comparators for the traits controlling invasiveness potential, or if the comparative approach is regarded as inadequate for reasons of risk perception or risk communication, experiments that simulate the dispersal of the crop into non-agricultural habitats may be necessary. We describe such an experiment for several commercial insect-resistant transgenic maize events in conditions similar to those found in maize-growing regions of Mexico. As expected from comparative risk assessments, the transgenic maize was found to behave similarly to non-transgenic maize and to be non-invasive. The value of this experiment in assessing and communicating the negligible ecological risk posed by the low invasiveness potential of insect-resistant transgenic maize in Mexico is discussed
    corecore