273 research outputs found
Recommended from our members
Determining solar effects in Neptune’s atmosphere
Long-duration observations of Neptune’s brightness in two visible wavelengths provide a disk-averaged estimate of its atmospheric aerosol. Brightness variations were previously associated with the 11-year solar cycle, through solar-modulated mechanisms linked with either ultra-violet (UV) or galactic cosmic ray (GCR) effects on atmospheric particles. Here we use a recently extended brightness dataset (1972-2014), with physically realistic modelling to show that rather than alternatives, UV and GCR are likely to be modulating Neptune’s atmosphere in combination. The importance of GCR is further supported by the response of Neptune's atmosphere to an intermittent 1.5 to 1.9 year periodicity, which occurred preferentially in GCR (not UV) during the mid-1980s. This periodicity was detected both at Earth, and in GCR measured by Voyager 2, then near Neptune. A similar coincident variability in Neptune’s brightness suggests nucleation onto GCR ions. Both GCR and UV mechanisms may occur more rapidly than the subsequent atmospheric particle transport
Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants
Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question ‘How threatened are plants?’ is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world’s plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed
Cost analysis of two anaesthetic machines: "Primus®" and "Zeus®"
Background Two anaesthetic machines, the "Primus®" and the "Zeus®" (Draeger AG, Lübeck, Germany), were subjected to a cost analysis by evaluating the various expenses that go into using each machine. Methods These expenses included the acquisition, maintenance, training and device-specific accessory costs. In addition, oxygen, medical air and volatile anaesthetic consumption were determined for each machine. Results Anaesthesia duration was 278 ± 140 and 208 ± 112 minutes in the Primus® and the Zeus®, respectively. The purchase cost was €3.28 and €4.58 per hour of operation in the Primus® and the Zeus®, respectively. The maintenance cost was €0.90 and €1.20 per hour of operation in the Primus® and the Zeus®, respectively. We found that the O2 cost was €0.015 ± 0.013 and €0.056 ± 0.121 per hour of operation in the Primus® and the Zeus®, respectively. The medical air cost was €0.005 ± 0.003 and €0.016 ± 0.027 per hour of operation in the Primus® and the Zeus®, respectively. The volatile anaesthetic cost was €2.40 ± 2.40 and €4.80 ± 4.80 per hour of operation in the Primus® and the Zeus®, respectively. Conclusion This study showed that the "Zeus®" generates a higher cost per hour of operation compared to the "Primus®"
Predictability of European winter 2020/2021: Influence of a mid‐winter sudden stratospheric warming
This is the final version. Available from Wiley via the DOI in this record. DATA AVAILABILITY STATEMENT:
The GloSea5 and ERA5 data used in the paper are available from the C3S Climate data store (https://cds.climate.
copernicus.eu/#!/home). HadSST4 is available from https://
www.metoffice.gov.uk/hadobs/hadsst4/, and HadSLP2r is
available from https://www.metoffice.gov.uk/hadobs/
hadslp2/.Boreal winter (December–February) 2020/2021 in the North Atlantic/European region was characterised by a negative North Atlantic Oscillation (NAO) index. Although this was captured within the ensemble spread of predictions from the Met Office Global Seasonal forecast system (GloSea5), with 17% of ensemble members predicting an NAO less than zero, the forecast ensemble mean was shifted towards a positive NAO phase. The observed monthly NAO anomalies were particularly negative in January and February, following an early January sudden stratospheric warming (SSW), and a prolonged period of Phase 6 or 7 of the Madden Julian Oscillation (MJO) in late January/early February. In contrast, predictions showed the expected teleconnection from the observed La Niña, with a positive NAO signal resulting from a weakening of the Aleutian Low leading to a reduction in tropospheric wave activity, an increase in polar vortex strength and a reduced chance of an SSW. Forecasts initialised later in the winter season successfully predicted the negative NAO in January and February once the SSW and MJO were within the medium range timescale. GloSea5 likely over-predicted the strength of the La Niña which we estimate caused a small negative bias in the SSW probability. However, this error is smaller than the uncertainty in SSW probability from the finite forecast ensemble size, emphasising the need for large forecast ensembles. This case study also demonstrates the advantage of continuously updated lagged ensemble forecasts over a ‘burst’ ensemble started on a fixed date, since a change in forecast signal due to events within the season can be detected early and promptly communicated to users.United Kingdom Public Weather ServiceMet Office Hadley Centre Climate Programm
Genome-Wide Polymorphism and Comparative Analyses in the White-Tailed Deer (Odocoileus virginianus): A Model for Conservation Genomics
The white-tailed deer (Odocoileus virginianus) represents one of the most successful and widely distributed large mammal species within North America, yet very little nucleotide sequence information is available. We utilized massively parallel pyrosequencing of a reduced representation library (RRL) and a random shotgun library (RSL) to generate a complete mitochondrial genome sequence and identify a large number of putative single nucleotide polymorphisms (SNPs) distributed throughout the white-tailed deer nuclear and mitochondrial genomes. A SNP validation study designed to test specific classes of putative SNPs provides evidence for as many as 10,476 genome-wide SNPs in the current dataset. Based on cytogenetic evidence for homology between cow (Bos taurus) and white-tailed deer chromosomes, we demonstrate that a divergent genome may be used for estimating the relative distribution and density of de novo sequence contigs as well as putative SNPs for species without draft genome assemblies. Our approach demonstrates that bioinformatic tools developed for model or agriculturally important species may be leveraged to support next-generation research programs for species of biological, ecological and evolutionary importance. We also provide a functional annotation analysis for the de novo sequence contigs assembled from white-tailed deer pyrosequencing reads, a mitochondrial phylogeny involving 13,722 nucleotide positions for 10 unique species of Cervidae, and a median joining haplotype network as a putative representation of mitochondrial evolution in O. virginianus. The results of this study are expected to provide a detailed template enabling genome-wide sequence-based studies of threatened, endangered or conservationally important non-model organisms
Size-Frequency Distributions along a Latitudinal Gradient in Middle Permian Fusulinoideans
Geographic gradients in body size within and among living species are commonly used to identify controls on the long-term evolution of organism size. However, the persistence of these gradients over evolutionary time remains largely unknown because ancient biogeographic variation in organism size is poorly documented. Middle Permian fusulinoidean foraminifera are ideal for investigating the temporal persistence of geographic gradients in organism size because they were diverse and abundant along a broad range of paleo-latitudes during this interval (∼275–260 million years ago). In this study, we determined the sizes of Middle Permian fusulinoidean fossils from three different paleo-latitudinal zones in order to examine the relationship between the size of foraminifers and regional environment. We recovered the following results: keriothecal fusulinoideans are substantially larger than nonkeriothecal fusulinoideans; fusulinoideans from the equatorial zone are typically larger than those from the north and south transitional zones; neoschwagerinid specimens within a single species are generally larger in the equatorial zone than those in both transitional zones; and the nonkeriothecal fusulinoideans Staffellidae and Schubertellidae have smaller size in the north transitional zone. Fusulinoidean foraminifers differ from most other marine taxa in exhibiting larger sizes closer to the equator, contrary to Bergmann's rule. Meridional variation in seasonality, water temperature, nutrient availability, and carbonate saturation level are all likely to have favored or enabled larger sizes in equatorial regions. Temporal variation in atmospheric oxygen concentrations have been shown to account for temporal variation in fusulinoidean size during Carboniferous and Permian time, but oxygen availability appears unlikely to explain biogeographic variation in fusulinoidean sizes, because dissolved oxygen concentrations in seawater typically increase away from the equator due to declining seawater temperatures. Consequently, our findings highlight the fact that spatial gradients in organism size are not always controlled by the same factors that govern temporal trends within the same clade
Mechanical Properties of Plant Underground Storage Organs and Implications for Dietary Models of Early Hominins
The diet of early human ancestors has received renewed theoretical interest since the discovery of elevated d13C values in the enamel of Australopithecus africanus and Paranthropus robustus. As a result, the hominin diet is hypothesized to have included C4 grass or the tissues of animals which themselves consumed C4 grass. On mechanical grounds, such a diet is incompatible with the dental morphology and dental microwear of early hominins. Most inferences, particularly for Paranthropus, favor a diet of hard or mechanically resistant foods. This discrepancy has invigorated the longstanding hypothesis that hominins consumed plant underground storage organs (USOs). Plant USOs are attractive candidate foods because many bulbous grasses and cormous sedges use C4 photosynthesis. Yet mechanical data for USOs—or any putative hominin food—are scarcely known. To fill this empirical void we measured the mechanical properties of USOs from 98 plant species from across sub-Saharan Africa. We found that rhizomes were the most resistant to deformation and fracture, followed by tubers, corms, and bulbs. An important result of this study is that corms exhibited low toughness values (mean = 265.0 J m-2) and relatively high Young’s modulus values (mean = 4.9 MPa). This combination of properties fits many descriptions of the hominin diet as consisting of hard-brittle objects. When compared to corms, bulbs are tougher (mean = 325.0 J m-2) and less stiff (mean = 2.5 MPa). Again, this combination of traits resembles dietary inferences, especially for Australopithecus, which is predicted to have consumed soft-tough foods. Lastly, we observed the roasting behavior of Hadza hunter-gatherers and measured the effects of roasting on the toughness on undomesticated tubers. Our results support assumptions that roasting lessens the work of mastication, and, by inference, the cost of digestion. Together these findings provide the first mechanical basis for discussing the adaptive advantages of roasting tubers and the plausibility of USOs in the diet of early hominins
Regulation of human endometrial function: mechanisms relevant to uterine bleeding
This review focuses on the complex events that occur in the endometrium after progesterone is withdrawn (or blocked) and menstrual bleeding ensues. A detailed understanding of these local mechanisms will enhance our knowledge of disturbed endometrial/uterine function – including problems with excessively heavy menstrual bleeding, endometriosis and breakthrough bleeding with progestin only contraception. The development of novel strategies to manage these clinically significant problems depends on such new understanding as does the development of new contraceptives which avoid the endometrial side effect of breakthrough bleeding
Alterations of Blood Brain Barrier Function in Hyperammonemia: An Overview
Ammonia is a neurotoxin involved in the pathogenesis of neurological conditions associated with hyperammonemia, including hepatic encephalopathy, a condition associated with acute—(ALF) or chronic liver failure. This article reviews evidence that apart from directly affecting the metabolism and function of the central nervous system cells, ammonia influences the passage of different molecules across the blood brain barrier (BBB). A brief description is provided of the tight junctions, which couple adjacent cerebral capillary endothelial cells to each other to form the barrier. Ammonia modulates the transcellular passage of low-to medium-size molecules, by affecting their carriers located at the BBB. Ammonia induces interrelated aberrations of the transport of the large neutral amino acids and aromatic amino acids (AAA), whose influx is augmented by exchange with glutamine produced in the course of ammonia detoxification, and maybe also modulated by the extracellularly acting gamma-glutamyl moiety transferring enzyme, gamma-glutamyl-transpeptidase. Impaired AAA transport affects neurotransmission by altering intracerebral synthesis of catecholamines (serotonin and dopamine), and producing “false neurotransmitters” (octopamine and phenylethylamine). Ammonia also modulates BBB transport of the cationic amino acids: the nitric oxide precursor, arginine, and ornithine, which is an ammonia trap, and affects the transport of energy metabolites glucose and creatine. Moreover, ammonia acting either directly or in synergy with liver injury-derived inflammatory cytokines also evokes subtle increases of the transcellular passage of molecules of different size (BBB “leakage”), which appears to be responsible for the vasogenic component of cerebral edema associated with ALF
- …